Skip to main content

Hydrogen - Bonded Systems as Proton Wires Formed by Side Chains of Proteins and by Side Chains and Phosphates.

  • Conference paper
Transport Through Membranes: Carriers, Channels and Pumps

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 21))

Abstract

Hydrogen bonds with double minimum proton potential show so — called proton polarizabilities which are 1–2 orders of magnitude larger than usual polarizabilities due to distortion of electron systems. They cause continua in the IR spectra.

It is shown by an ab initio SCF treatment that H—bonded chains with multiminima proton potentials show still larger proton polarizabilities than single H—bonds. With a multiminima model proton potential it is shown that the proton polarizability increases with increasing number of minima and becomes up to four orders of magnitude larger than usual polarizabilities.

IR continua demonstrate that intramolecular H—bonded systems may show large proton polarizability. Many H—bonds between side chains of proteins show large proton polarizability. It is discussed that chains built up by such bonds would also show large proton polarizability since the proton motion within these bonds is coupled via proton dispersion forces. Finally it is demonstrated that H—bonded systems formed by side chains and several phosphates show large proton polarizability. The behavior of these systems is strongly cation and sometimes pH dependent.

Thus, all these systems are very effective proton wires which may be controlled by the cations present and sometimes by the pH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. G. Weidemann and G. Zundel, Z. Naturforschung 25a 627–634 (1970).

    Google Scholar 

  2. R. Janoschek, E. G. Weidemann, H. Pfeiffer and G. Zundel, J. Amcr. Chem. Soc. 94 2387–2396 (1972).

    Article  CAS  Google Scholar 

  3. R. Janoschek, E. G. Weidemann and G. Zundel, J. Chem.Soc., Faraday Trans. II 69 505–520 (1973).

    Article  CAS  Google Scholar 

  4. M. Eckert and G. Zundel, J. Phys. Chem. 91 5170–5177 (1987).

    Article  CAS  Google Scholar 

  5. G. Zundel, ’Easily Polarizable Hydrogen Bonds - Their Interactions with the Environment - IR Continuum and Anomalous Large Conductivity’ in: The Hydrogen Bond—Recent Developments in Theory and Experiments—P. Schuster, G. Zundel, C. Sandorfy eds., Vol.11, Ch.15, North Holland Pubi. Co., Amsterdam, 1976, 684–766.

    Google Scholar 

  6. G. Zundel and J. Fritsch, ’Interaction and Structure of Ionic Solvates - Infrared Results’ in.Chemical Physics of Solvation, Vol.11, Ch.2, R. R. Dogonadze, E. Kaiman, A. A. Kornyshev and J. Ulstrup, eds., Elsevier, Amsterdam, 1986, 21–96.

    Google Scholar 

  7. G. Zundel, ’Proton Polarizability of H-Bonds: Infrared Methods, Relevance to Electrochemical and Biological Systems’ in: Biomembranes, Protons and Water: Structure and Translocation(A Volume of Methods in Enzymology) Vol. 127, part 0, L. Packer ed., Academic Press, New York, 1986, 439–455.

    Chapter  Google Scholar 

  8. E. Grech, Z. Malarski, M. Ilczyszyn, O. Ezupninski, L. Sobczyk, J. Roziere, B. Bonnet and J. Potier J. Mol. Struct. 128 249 (1985).

    Article  CAS  Google Scholar 

  9. J. Baran, Z. Malarski, L. Sobczyk and E. GrechSpectrochim. Acta A,in press.

    Google Scholar 

  10. V. Videnova - Adrabinska, J. Baran and H. Ratajczak, J. Mol. Struct.145 33–43 (1986).

    Article  CAS  Google Scholar 

  11. D. Schiöberg and G. Zundel, J. Ghem. Soc. Faraday Trans. II 69 771–781 (1973)

    Article  Google Scholar 

  12. H. Merz and G. Zundel, Biochem. Biophys. Res. Comm. 101 540–546 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. M. Eckert and G. Zundel, J. Phys. Chem.,in press.

    Google Scholar 

  14. M. Eckert and G. Zundel, J. Mol. Struct.Theoret. Chem.,in press.

    Google Scholar 

  15. H. Engelhardt and N. Riehl, Phys. kondens. Materie 5 73–82 (1966).

    Article  CAS  Google Scholar 

  16. B. Brzezinski, G. Zundel and R. Krämer, J. Phys. Chem.91, 3077–3080 (1987).

    Article  CAS  Google Scholar 

  17. G. Zundel and J. Mühlinghaus, Z. Naturforschung 26B 546–555 (1971).

    Google Scholar 

  18. R. Lindemann and G. ZundelBiopolymers 16 2407–2418 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. R. Lindemann and G. ZundelBiopolymers 17 1285–1304 (1978).

    Article  CAS  Google Scholar 

  20. .W. Kristof and G. Zundel, Biophys. Struct. Mech.6 209–225 (1980).

    Article  CAS  Google Scholar 

  21. W. Kristof and G. ZundelBiopolymers 19 1753–1769 (1980).

    Article  CAS  Google Scholar 

  22. P. P. Rastogi, W. Kristof and G. Zundel, Internat. J. Biol. Macromol. 3 154–158 (1981).

    Article  CAS  Google Scholar 

  23. P. P. Rastogi and G. Zundel, Biochem. Biophys. Res. Commun. 99 804–812 (1981).

    Article  PubMed  CAS  Google Scholar 

  24. P. P. Rastogi and G. Zundel, Z. Naturforschung 36c 961–963 (1981).

    CAS  Google Scholar 

  25. W. Kristof and G. ZundelBiopolymers 21 25–42 (1982).

    Article  CAS  Google Scholar 

  26. E. G. Weidemann and G. Zundel, Z. Physik 198 288–303(1967).

    Article  CAS  Google Scholar 

  27. E. G. Weidemann and G. Zundel, Z. Naturforschung 28a 236–245 (1973).

    Google Scholar 

  28. U. Burget and G. ZundelJ. Mol. Struct. 145 93–109 (1986).

    Article  CAS  Google Scholar 

  29. U. Bürget and G. ZundelBiopolymers 26 95–108 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. U. Bürget and G. Zundel, Biochem. (Life Science Adv.) 7 35 – 43 (1988).

    Google Scholar 

  31. U. Bürget and G. Zundel, J. Chem. Soc. Faraday Trans. I 84 885–898 (1988).

    Article  CAS  Google Scholar 

  32. U. Burget and G. Zundel, Biophys. J. 52 1065 – 1070 (1987)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this paper

Cite this paper

Zundel, G. (1988). Hydrogen - Bonded Systems as Proton Wires Formed by Side Chains of Proteins and by Side Chains and Phosphates.. In: Pullman, A., Jortner, J., Pullman, B. (eds) Transport Through Membranes: Carriers, Channels and Pumps. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3075-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3075-9_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7882-5

  • Online ISBN: 978-94-009-3075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics