Skip to main content

Phosphate Uptake and Utilization by Bacteria and Algae

  • Conference paper
Phosphorus in Freshwater Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 48))

Abstract

Bacterial uptake of inorganic phosphate (closely investigated in Escherichia coli) is maintained by two different uptake systems. One (Pst system) is Pi-repressible and used in situations of phosphorus deficiency. The other system (Pit system) is constitutive. The Pit system also takes part in the phosphate exchange process where orthophosphate is continuously exchanged between the cell and the surrounding medium.

Algal uptake mechanisms are less known. The uptake capacity increases during starvation but no clearly defined transport systems have been described. Uptake capacity seems to be regulated by internal phosphorus pools, e.g., polyphosphates. In mixed algal and bacterial populations, bacteria generally seem to be more efficient in utilizing low phosphate concentrations. The second half of this paper discusses how bacteria and algae can share limiting amounts of phosphate provided that the bacteria have pronouncedly higher affinity for phosphate. Part of the solution to this problem may be that bacteria are energy-limited rather than phosphate-limited and dependent on algal organic exudates for their energy supply.

The possible phosphate exchange mechanism so convincingly demonstrated in Escherichia coli is here suggested to play a key role for the flux of phosphorus between bacteria and algae. Such a mechanism can also be used to explain the rapid phosphate exchange between the particulate and the dissolved phase which always occurs in short-term 32P-uptake experiments in lake waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azad, H. S. &J. A. Borchardt, 1970. Variations in phosphorus uptake by algae. Envir. Sci. Technol. 4: 737–743.

    Article  Google Scholar 

  • Berman, T., 1983. Phosphorus uptake by microplankton in estaurine and coastal shelf waters near Sapelo Island, Georgia, USA. Estuaries 6: 160–166.

    Article  CAS  Google Scholar 

  • Berman, T., 1985. Uptake of (32P) orthophosphate by algae and bacteria in Lake Kinneret. J. Plankton Res. 7: 71–84.

    Article  CAS  Google Scholar 

  • Berman, T. &K. Kaplan, 1984. Diffusion chamber studies of carbon flux from living algae to heterotrophic bacteria. Hydrobiologia 108: 127–134.

    Article  Google Scholar 

  • Blum, J. J., 1966. Phosphate uptake by phosphate-starved Euglena. J. gen. Physiol. 49: 1125–1137.

    PubMed  CAS  Google Scholar 

  • Broberg, O., 1984. Phosphate removal in acidfied and limed lake water. Wat. Res. 18: 1273–1278.

    Article  CAS  Google Scholar 

  • Brown, E. J., R. F. Harris &J. F. Koonce, 1978. Kinetics of phosphate uptake by aquatic microorganisms: deviations from a simple Michaelis-Menten equation. Limnol. Oceanogr. 23: 26–34.

    Article  CAS  Google Scholar 

  • Brown, E. J. &D. K. Button, 1979. Phosphate limited growth kinetics of Selenastrum capricornutum (Chlorphyceae). J. Phycol. 15: 305–31.

    Article  CAS  Google Scholar 

  • Burns, D. J. W. &R. E. Beever, 1979. Mechanisms controlling the two phosphate uptake systems in Neurospora crassa. J. Bact. 139: 195–204.

    PubMed  CAS  Google Scholar 

  • Burnison, K., 1975. Microbial ATP studies. Verh. int. Ver. Limnol. 19: 286–290.

    Google Scholar 

  • Cembella, A. D., N. J. Antia &P. J. Harrison, 1984a. The utilization of inorganic and organic phosphorus compounds as nutrients by eukariotic microalgae: a multidisciplinary perspective. Part 1. Crit. Rev. Microbiol. 10: 317–391.

    Article  PubMed  CAS  Google Scholar 

  • Cembella, A. D., N. J. Antia &P. J. Harrison, 1984b. The utilization of inorganic and organic phosphorus compounds as nutrients by eukariotic microalgae: a multidisciplinary perspective. Part 2. Crit. Rev. Microbiol. 11: 13–117.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, S.W. &R. G. Stross, 1976a. Phosphate uptake kinetcis in Euglena gracilis (Z) (Euglenophyceae) grown in light/dark cycles. 1. Synchronized batch cultures. J. Phycol. 12:210–216.

    CAS  Google Scholar 

  • Chisholm, S.W. &R. G. Stross, 1976b. Phosphate uptake kinetics in Euglena gracilis (Z) (Euglenophosphyceae) grown in light/dark cycles. 2. Phased PO4-limited cultures. J. Phycol. 12: 217–222.

    CAS  Google Scholar 

  • Coveney, M. F., 1982. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos 38: 8–20.

    Article  CAS  Google Scholar 

  • Currie, D. J. &J. Kalff, 1984a. A comparison of the abilities of freshwater algae and bacteria to aquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.

    Article  CAS  Google Scholar 

  • Currie, D. J. &J. Kalff, 1984b. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.

    Article  CAS  Google Scholar 

  • Currie, D. J. &J. Kalff, 1984c. Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb. Ecol. 10: 205–216.

    Article  CAS  Google Scholar 

  • Fitzgerald, G. P. &T. C. Nelson, 1966. Extractive and enzymatic analysis for limiting surplus phosphorus in algae. J. Phycol. 2: 32–37.

    Article  Google Scholar 

  • Fogg, G. E., 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. mar. 26: 3–14.

    Article  CAS  Google Scholar 

  • Friebele, E. S., D. L. Correll &M. Faust, 1978. Relationship between phytoplankton cells size and the rate of orthophosphate uptake: in situ observations of an estaurine population. Mar. Biol. 45: 39–52.

    Article  CAS  Google Scholar 

  • Fuhs, G. W., D. L. Demmerle, E. Canelli &M. Chen, 1972. Characterization of phosphorus limited plankton algae (with reflections of the limiting nutrient concept). In G. E. Likens (ed.) Nutrients and Eutrophication. Am. Soc. Limnol. Oceanogr. Spec. Symp. 1: 113–133.

    Google Scholar 

  • Gerdes, R. L. &H. Rosenberg, 1974. The relationship between the phosphate binding protein and a regular gene product from Escherichia coli. Biochim. Biophys. Acta 351: 77–86.

    PubMed  CAS  Google Scholar 

  • Gerdes, R. C., K. P. Strickland &H. Rosenberg, 1977. Restoration of phosphate transport by the phosphate binding protein in sphaeroplasts of Escherichia coli. J. Bact. 131: 512–518.

    PubMed  CAS  Google Scholar 

  • Gest, H. &M. D. Kamen, 1948. Studies on the phosphorus metabolism of green algae and purple bacteria in relation to photosynthesis. J. Biol. Chem. 176: 299–318.

    PubMed  CAS  Google Scholar 

  • Healey, F. P., 1973. Characteristics of phosphorus deficiency in Anabaena. J. Phycol. 9: 383–394.

    CAS  Google Scholar 

  • Jansson, M., H. Olsson &K. Pettersson. Phosphatases: origin, characteristics and function in lakes. Hydrobiologia (this volume).

    Google Scholar 

  • JeanJean, R. &G. Ducet, 1974. Carrier turnover and phosphate uptake in Chlorella pyrenoidosa. In U. Zimmerman &J. Dainty (eds), Membrane Transport in Plants. Springer Verlag, NY: 216–219.

    Google Scholar 

  • JeanJean, R., 1976. The effect of metabolic poisons on ATP level and on active phosphate uptake in Chlorella pyrenoidosa. Physiol. Pl. 37: 107–110.

    Article  CAS  Google Scholar 

  • Koschel, R., 1980. Untersuchung zur Phosphataffinität des Planktonsinder euphotische zone von Zeen. Limnologica (Berlin). 12: 141–145.

    Google Scholar 

  • Kuenzler, E. J., 1965. Glucose-6-phosphate utilization by marine algae. J. Phycol. 1: 156–164.

    Article  Google Scholar 

  • Kylin, A., 1966. The influence of photosynthetic factors and metabolic inhibitors on the uptake of phosphate in P-def-icient Scenedesmus. Physiol. PL 19: 644–649.

    Article  CAS  Google Scholar 

  • Lean, D. R. S., 1973a. Phosphorus dynamics in lake water. Science. 179: 678–680.

    Article  PubMed  CAS  Google Scholar 

  • Lean, D. R. S., 1973b. Phosphorus movement between biologically important forms in lake water. J. Fish. Res. Bd Can. 30: 1525–1536.

    Article  CAS  Google Scholar 

  • Lean, D. R. S., C. Nalewajko, 1976. Phosphate exchange and organic phosphorus excretion by freshwater algae. J. Fish. Res. Bd Can. 33: 1312–1323.

    Article  CAS  Google Scholar 

  • Loewendorf, H. S., C. L. Slayman &C. W. Slayman, 1974. Phosphate transport in Neurospora. Kinetic characterization of a constitutive, low affinity transport system. Biochim. Biophys. Acta 373: 369–382.

    Article  Google Scholar 

  • Medvescky, N. &H. Rosenberg, 1971. Phosphate transport in Escherichia coli. Biochim. Biophys. Acta 373: 369–382.

    Google Scholar 

  • Nalewajko, C. &K. Lee, 1981. Phosphorus kinetics in Lake Superior: Light intensity and phosphate uptake in algae. Can. J. Fish. aquat. Sci. 38: 224–232.

    Article  CAS  Google Scholar 

  • Olsson, H. &M. Jansson, 1984. Stability of dissolved 32P-labelled phosphorus compounds in lake water and algal cultures -resistance to enzymatic treatment and algal uptake. Verh. int. Ver. Limnol. 22: 200–204.

    CAS  Google Scholar 

  • Paerl, H. W. &D. R. S. Lean, 1976. Visual observations of phosphorus movement between algae, bacteria and abiotic particles in lake waters. J. Fish. Res. Bd Can. 33: 2805–2813.

    Article  Google Scholar 

  • Perry, M. J., 1976. Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the central North Pacific. Limnol. Oceanogr. 21: 88–107.

    Article  CAS  Google Scholar 

  • Rhee, G. Y., 1973. A continous culture study of phosphorus uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495–506.

    CAS  Google Scholar 

  • Rhee, G. Y., 1980. Continous culture in phytoplankton ecology. In M. R. Droop &H. W. Jannasch, (eds), Advances in aquatic microbiology. Academic Press, NY: 151–203.

    Google Scholar 

  • Rigler, F. H., 1956. A tracer study of the phosphorus cycle in lake water. Ecology. 37: 550–562.

    Article  CAS  Google Scholar 

  • Rigler, F. H., 1973. A dynamic view of the phosphorus cycle in lakes. In E. J. Griffith, A. Beeton, J. M. Spencer &D. T. Mitchell, (eds), Environmental phosphorus handbook. J. Wiley &Sons, Toronto: 539–572.

    Google Scholar 

  • Rivkin, R. B. &Swift, 1982. Phosphate uptake by the oceanic dinoflagellate Pyrocystis notiluca. J. Phycol. 18: 113–121.

    Article  CAS  Google Scholar 

  • Rosenberg, H., R. S. Gerdes &K. Chegwidden, 1978. Two systems for the uptake of phosphate in Escherichia coli. J. Bact. 131: 505–511.

    Google Scholar 

  • Rosenberg, H., R. S. Gerdes &F. M. Harold, 1979. Energy coupling of the transport of inorganic phosphate in E. coli K12. Biochem. J. 178: 133–137.

    PubMed  CAS  Google Scholar 

  • Rosenberg, H., L. M. Russel, P. A. Jacomb &K. Chegwidden, 1982. Phosphate exchange in the Pit transport system in Escherichia coli. J. Bact. 149: 123–130.

    PubMed  CAS  Google Scholar 

  • Russel, L. M. &H. Rosenberg, 1979. Linked transport of phosphate, potassium ions and protons in Escherichia coli. Biochem. J. 184: 13–21.

    Google Scholar 

  • Simonis, W. &H. Gimmler, 1969. Effect of inhibitors of photophosphorylation on light-induced dark incorporation of 32P into Ankistrodesmus braunii. In H. Metzner (ed.), Progress in photosynthetic research. H. Laupp. Jr. Tübingen, West Germany: 1155–1161.

    Google Scholar 

  • Willsky, G. R. &M. H. Malamy, 1976. Control of the synthesis of alkaline phosphatase and the phosphate binding protein in Escherichia coli. J. Bact. 127: 595–609.

    PubMed  CAS  Google Scholar 

  • Willsky, G. R., R. L. Bennet &M. H. Malamy, 1973. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J. Bact. 113: 529–539.

    PubMed  CAS  Google Scholar 

  • Willsky, G. R. &M. H. Malamy, 1980. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J. Bact. 144: 356–365.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gunnar Persson Mats Jansson

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this paper

Cite this paper

Jansson, M. (1988). Phosphate Uptake and Utilization by Bacteria and Algae. In: Persson, G., Jansson, M. (eds) Phosphorus in Freshwater Ecosystems. Developments in Hydrobiology, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3109-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3109-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7898-6

  • Online ISBN: 978-94-009-3109-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics