Skip to main content

Intermediary Steps in Methanogenesis

  • Chapter
Microbial Growth on C1 Compounds

Abstract

The eight electron reduction of CO2 to methane proceeds through the oxidation levels formate, formaldehyde and methanol. In this process the C1-unit remains bound to three unique C1-carriers, methanofuran, 5,6,7,8-tetrahydromethanopterin (H4MPT) and coenzyme M (HS-CoM, 2-mercaptoethane-sulfonic acid) [1,2,3] (Fig. 1). The pathway shown in Fig. 1 was established for Methanobacterium thermoautotrophicum, but the presence of the typical C1-carriers in all species tested suggests that this CO2 reduction route is common to all hydrogenotrophic methanogenic bacteria [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Escalante-Semerena JC, Leigh JA, Wofe RS. (1984) In Microbial Growth on C1 compounds (Crawford RL, Hanson RS, eds), 191–198. Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  2. Wolfe RS. (1985) Trends Biochem. Sci. 10, 396–399.

    Article  CAS  Google Scholar 

  3. Keltjens JT, Van der Drift C. (1986) FEMS Microbiol. Rev., in press.

    Google Scholar 

  4. Jones WJ, Donelly MI, Wolfe RS. (1985) J. Bacteriol. 163, 126–131.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Leigh JA, Rinehart KL Jr., Wolfe RS. (1985) Biochemistry 24, 995–999.

    Article  CAS  PubMed  Google Scholar 

  6. Blaut M, Gottschalk G. (1985) Trends Biochem. Sci. 10, 486–489.

    Article  CAS  Google Scholar 

  7. Miller TL, Wolin MJ. (1985) Arch. Microbiol. 141, 116–122.

    Article  CAS  PubMed  Google Scholar 

  8. Gunsalus RP, Wolfe RS. (1977) Biochem. Biophys. Res. Commun. 76, 790–795.

    Article  CAS  PubMed  Google Scholar 

  9. Romesser JA, Wolfe RS. (1982) J. Bacteriol. 152, 840–847.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Van Beelen P, Thiemessen HL, De Cock RM, Vogels GD. (1983) FEMS Microbiol. Lett. 18, 135–138.

    Article  Google Scholar 

  11. Leigh JA, Wolfe RS. (1983) J. Biol. Chem. 258, 7536–7540.

    CAS  PubMed  Google Scholar 

  12. Hutten TJ, De Jong MH, Peeters BPH, Van der Drift C, Vogels GD. (1981) J. Bacteriol. 145, 27–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Escalante-Semerena JC, Rinehart KL Jr., Wolfe RS. (1984) J. Biol. Chem. 259, 9447–9455.

    CAS  PubMed  Google Scholar 

  14. Keltjens JT, Caerteling GC, Van der Drift C, Vogels GD. (1986) Syst. Appl. Microbiol. 7, 370–375.

    Article  CAS  Google Scholar 

  15. Shapiro S. (1982) Can. J. Microbiol. 28, 1409–1411.

    Article  CAS  Google Scholar 

  16. Van der Meijden P, Heythuysen HJ, Sliepenbeek HT, Houwen FP, Van der Drift C, Vogels GD.(1983) J. Bacteriol. 153, 6–11.

    PubMed Central  PubMed  Google Scholar 

  17. Van der Meijden P, Heythuysen HJ, Pouwels A, Houwen F, Van der Drift C, Vogels GD. (1983) Arch. Microbiol. 134, 238–242.

    Article  PubMed  Google Scholar 

  18. Van der Meijden P, Jansen LPJM, Van der Drift C, Vogels GD. (1983) FEMS Microbiol. Lett. 19, 247–251.

    Article  Google Scholar 

  19. Van der Meijden P, Van der Lest C, Van der Drift C, Vogels GD. (1984) Biochem. Biophys. Res. Commun. 118, 760–766.

    Article  PubMed  Google Scholar 

  20. Van der Meijden P, te Brömmelstroet BW, Poirot CM, Van der Drift C, Vogels GD. (1984) J. Bacteriol. 160, 629–639.

    PubMed Central  PubMed  Google Scholar 

  21. Taylor CD, Wolfe RS. (1974) J. Biol. Chem. 249, 4886–4890.

    CAS  PubMed  Google Scholar 

  22. Gunsalus RP, Wolfe RS. (1978) J. Bacteriol. 135, 851–857.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Gunsalus RP, Wolfe RS. (1980) J. Biol. Chem. 255, 1891–1895.

    CAS  PubMed  Google Scholar 

  24. Whitman WB, Wolfe RS. (1983) J. Bacteriol. 154, 640–649.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Ankel-Fuchs D, Thauer RK. (1986) Eur. J. Biochem. 156, 171–177.

    Article  CAS  PubMed  Google Scholar 

  26. Thauer RK, Ankel-Fuchs D, Diekert G, Gilles H-H, Graf E-G, Jaenchen R, Moll J, Schönheit P. (1984) In Microbial Growth on C1 compounds (Crawford RL, Hanson RS, eds), 188–190. Am. Soc. Microbiol, Washington, D.C.

    Google Scholar 

  27. Albracht SPJ, Ankel-Fuchs D, Van der Zwaan JW, Fontijn RD, Thauer RK. (1986) Biochim. Biophys. Acta 870, 50–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

van der Drift, C., Keltjens, J.T., Vogels, G.D. (1987). Intermediary Steps in Methanogenesis. In: van Verseveld, H.W., Duine, J.A. (eds) Microbial Growth on C1 Compounds. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3539-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3539-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8082-8

  • Online ISBN: 978-94-009-3539-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics