Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 125))

Abstract

The general theory of a nonequilibrium slurry developed by Loper and Roberts [1] is used as the basis for developing a Boussinesq model of a slurry. This simple model employs the assumptions of constant composition of the solid phase and fast melting, i.e. rapid approach to phase equilibrium. The boundary conditions appropriate for the set of equations is developed. A simple static solution of the set of equations is tested for dynamical stability and is found to be almost always unstable. The mode of instability is new, involving melting and freezing of solid particles as the constraint of the liquidus condition dictates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loper, D.E., and P.H. Roberts. On the Motion of an Iron-alloy Core Containing a Slurry. I. General Theory. Geophys Astrophys. Fluid Dyn. 9 (1978) 289–321.

    Article  CAS  Google Scholar 

  2. Yoder, H.S. The Evolution of the Igneous Rocks. Princeton University Press, 1979.

    Google Scholar 

  3. Yoder, H.S. Generation of Basaltic Magma. National Academy of Science, 1976.

    Google Scholar 

  4. Chen, C., and J.S. Turner. Crystallization in a Double-diffusive System. J. Geophys. Res. 85 (1980) 2573–2593.

    Article  CAS  Google Scholar 

  5. Huppert, H.E., and R.S.J. Sparks. The Fluid Dynamics of a Basaltic Magma Chamber Replenished by Influx of Hot Dense Ultrabasic Magma. Contr. Mineral. Petrol. 75 (1980) 279–289.

    Article  Google Scholar 

  6. Huppert, H.E., and R.S.J. Sparks. Double-diffusive Convection due to Crystallization in Magmas. Ann. Rev. Earth Planet. Sci. 12 (1984) 11–37.

    Article  CAS  Google Scholar 

  7. Huppert, H.E., R.S.J. Sparks, and J.S. Turner. Effects of Volatiles on Mixing in Calc-alkaline Magma Systems. Nature 297 (1982) 554–557.

    Article  Google Scholar 

  8. Huppert, H.E., R.S.J. Sparks, and J.S. Turner. Some Effects of Viscosity on the Dynamics of Replenished Magma Chambers. Earth Planet. Sci. Lett. 65 (1983) 377–381.

    Article  CAS  Google Scholar 

  9. Huppert, H.E., R.S.J. Sparks, and J.S. Turner. Laboratory Investigations of Viscous Effects in Replenished Magma Chambers. J. Geophys. Res. 89 (1984) 6857–6877.

    Article  CAS  Google Scholar 

  10. Huppert, H.E., and J.S. Turner. A Laboratory Model of a Replenished Magma Chamber. Earth Planet Sci. Lett. 54 (1981) 144–152.

    Article  CAS  Google Scholar 

  11. Huppert, H.E., and J.S. Turner. Double-Diffusive Convection. J. Fluid Mech. 106 (1981) 299–329.

    Article  Google Scholar 

  12. Huppert, H.E., J.S. Turner, and R.S.J. Sparks. Replenished Magma Chambers: Effects of Compositional Zonation and Input Rates. Earth Planet. Sci. Lett. 57 (1982) 345–357.

    Article  CAS  Google Scholar 

  13. Kerr, R.C., and J.S. Turner. Layered Convection and Crystal Layers in Multicomponent Systems. Nature 289 (1982) 731–733.

    Article  Google Scholar 

  14. Sparks, R.S.J., H.E. Huppert, and J.S. Turner. The Fluid Dynamics of Evolving Magma Chambers. Phil. Trans. R. Soc. London A 310 (1984) 511–534.

    Article  Google Scholar 

  15. Turner, J.S. Some Geologic Implications of Double-Diffusive Convection. Seventh Australasian Hydraulics and Fluid Mechanics Conference, Brisbane, 18–22 August (1980) 203–206.

    Google Scholar 

  16. Turner, J.S. A Fluid-Dynamical Model of Differentiation and Layering in Magma Chambers. Nature 285 (1980) 213–215.

    Article  CAS  Google Scholar 

  17. Turner, J.S., and L.B. Gustafson. Fluid Motions and Compositional Gradients Produced by Crystallization or Melting at Vertical Boundaries. J. Volcanol. Geotherm. Res. 11 (1981) 93–125.

    Article  CAS  Google Scholar 

  18. Hargraves, R.B., ed. Physics of Magmatic Processes. Princeton University Press, 1980.

    Google Scholar 

  19. Hills, R.N., D.E. Loper, and P.H. Roberts. A Thermodynamically Consistent Model of a Mushy Zone. Q. J. Mech. Appl. Math. 36 (1983) 505–539.

    Article  Google Scholar 

  20. Osborn, E.F. The Reaction Principle. in The Evolution of the Igneous Rocks, edited by H.S. Yoder, Princeton University Press (1979) 131–169.

    Google Scholar 

  21. Loper, D.E., and P.H. Roberts. On the Motion of an Iron Alloy Core Containing a Slurry. II. A Simple Model. Geophys. Astrophys. Fluid Dyn. 16 (1980) 83–127.

    Article  Google Scholar 

  22. Glicksman, M.E., and P.W. Voorhees. Ostwald Ri Deninq and Relaxation of Dendritic Structures. Metallurg. Trans. A. 15 (1984) 995–1001.

    Article  Google Scholar 

  23. Batchelor, G.K. An Introduction to Huid Dynamics. Cambridge University Press, 1970.

    Google Scholar 

  24. Loper, D.E., and P.H. Roberts. Compositional Convection and the Gravitationally Powered Dynamo. in Stellar and Planetary Magnetism, edited by A.M. Soward, Gordon and Breach (1983) 297–327.

    Google Scholar 

  25. Loper, D.E. Structure of the Core and Lower Mantle. Adv. Geophys. 26 (1984) 1–34.

    Article  Google Scholar 

  26. Jackson, R. The Mechanics of Fluidized Beds. Part 1. The Stability of the State of Uniform Fluidization. Trans. Inst. Chem. Engrs. 41 (1963) 13–21.

    CAS  Google Scholar 

  27. Anderson, T.B., and R. Jackson. A Fluid Mechanical Description of Fluidized Beds — Stability of the State of Uniform Fluidization. Ind. Engng. Chem. Fundam. 7 (1968) 12–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Loper, D.E., Roberts, P.H. (1987). A Boussinesq Model of a Slurry. In: Loper, D.E. (eds) Structure and Dynamics of Partially Solidified Systems. NATO ASI Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3587-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3587-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8104-7

  • Online ISBN: 978-94-009-3587-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics