Skip to main content

Molten Salt Batteries

  • Chapter
Molten Salt Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 202))

Abstract

The basic thermodynamics of galvanic cells and the fundamentals of electrode kinetics are briefly reviewed with reference to batteries. The advantages of molten salts as electrolytes or as active components in practical batteries are discussed. The molten salt cells currently under development are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. A. Vincent, B. Scrosati, M. Lazzari, and F. Bonino, Modem Batteries”, Edward Arnold, London, 1984.

    Google Scholar 

  2. E. J. Cairns, in “Comprehensive Treatise of Electrochemistry”, Vol.3, J. O’M Bockris, B. E. Conway, E. Yeager, and R. A. White, eds., Plenum Press, New York, 1981, pp. 342–370.

    Google Scholar 

  3. E. J. Cairns, G. Mamantov, R. P. Tisher, and D. R. Vissers, in Proceedings Fourth Int. Symp. Molten Salts, M. Blander, ed., The Electrochemical Soc., 1984, pp. 284–312.

    Google Scholar 

  4. R. A. Sharma, J. Electrochem. Soc., 123, 448 (1976).

    Article  CAS  Google Scholar 

  5. P. A. Nelson, N. P. Yao, R. K. Steunenberg, A. A. Chilenskas, E. C. Gray, J: E. Battles, F. Hornstra, W. E. Miller, M. F. Roche, and H. Shimotake, Progress Report. ANL-77–35 Argonne Natl. Lab., 1977.

    Google Scholar 

  6. M. L. Saboungi, J. J. Marr, and M. Blander, J. Electrochem. Soc.,125, 1567 (1978).

    Article  CAS  Google Scholar 

  7. M. L. Saboungi, A. Martin, Ext. Abst. Meet. Electrochem. Soc., 154th, 1978, p. 919.

    Google Scholar 

  8. Z. Tomczuk, S. K. Preto, and M. F. Roche, J. Electrochem. Soc., 128, 760 (1981).

    Article  CAS  Google Scholar 

  9. Z. Tomczuk, M. F. Roche, and D. R. Vissers, J. Electrochem. Soc., 128, 2255 (1981).

    Article  CAS  Google Scholar 

  10. D. R. Vissers, K. E. Anderson, C.K. Ho, and H. Shimotake, Ext. Abst. Electrochem. Soc., 154th, 1978, p. 97.

    Google Scholar 

  11. J. R. Selman, and M. L. Saboungi, in “The Sulfur Electrode”, R. P. Tisher, ed., Academic Press, New York, 1983, pp. 82–147.

    Google Scholar 

  12. J. R. Selman, in “The Sulfur Electrode”, R. P. Tisher, ed., Academic Press, New York 1983, pp. 219–232.

    Google Scholar 

  13. S. K. Preto, Z. Tomczuk, S. von Winbush, and M. F. Roche, J.Electrochem. Soc.,130, 264 (1983).

    Article  CAS  Google Scholar 

  14. A. E. Martin, in “High Performance Batteries for Electric Vehicles Propulsion and Stationary Energy Storage”, Argonne National Lab., Report ANL-78–94, (1980).

    Google Scholar 

  15. A. E. Martin, and Z. Tomczuk, in “High Performance Batteries for Electric Vehicles Propulsion and Stationary Energy Storage”, Argonne National Lab., Report ANL-79–39, (1979).

    Google Scholar 

  16. Z. Tomczuk, B. Tani, N. C. Otto, M. F. Roche, and D. R. Vissers, J. Electrochem. Soc., 129, 925 (1982).

    Article  CAS  Google Scholar 

  17. R. A. Sharma, and R. N. Seefurth, J. Electrochem. Soc., 123, 1763 (1976).

    Article  CAS  Google Scholar 

  18. K. M. Myles, F. C. Mrazek, J. A. Smaga, and J. L. Settle, in “Proceedings of the Symposium and Workshop on Advanced Battery Research and Design”, March 22–24, 1976, Argonne National Lab. Report ANL-76–8 (1976), p. B-69.

    Google Scholar 

  19. C. A. Levine, in The Sulfur Electrode”, R. P. Tisher, ed., Academic Press, New York, 1983, pp. 327–328. Academic Press, New York, 1983, pp. 327–338.

    Google Scholar 

  20. J. T. Kummer, and N. Weber, Proc. SAE Congr., 1967, paper 670179, pp. 1–6.

    Google Scholar 

  21. J. T. Kummer, and N. Weber, U.S. Patent No. 3,404,035, 1968.

    Google Scholar 

  22. N. K. Gupta, and R. P. Tisher, J. Electrochem. Soc., 119, 1033 (1972).

    Article  CAS  Google Scholar 

  23. R. P. Tisher, and F. A. Ludwig, in “Advances in Electrochemistry and Electrochemical Engineering”, Vol. 10, H. Gerischer and C. W. Tobias, eds., J. Wiley, New York, 1977, p. 391.

    Google Scholar 

  24. D. A. Aikens, in “The Sulfur Electrode”, R. P. Tisher, ed., Academic Press, New York 1983, pp. 163–188.

    Google Scholar 

  25. G. J. Janz, and R. M. Murthy, J. Electrochem. Soc., 125, 1605 (1978).

    Article  CAS  Google Scholar 

  26. G. J. Janz, W. A. Spiak, and R. M. Murthy, J. Appl. Electrochem., 10, 789 (1980).

    Article  CAS  Google Scholar 

  27. I. W. Jones, Phil. Trans. R. Soc. Lond. A, 302, 339 (1981).

    Article  CAS  Google Scholar 

  28. S. Menniche, in Proc. Power Sources Symp., 30, 48 (1983).

    Google Scholar 

  29. R. Knoedler, Lecture Notes in Physics, 172, 160 (1982).

    Article  CAS  Google Scholar 

  30. W. Fisher, Solid State Ionics, 3/4, 413 (1981).

    Article  Google Scholar 

  31. J. L. Sudworth, and A. R. Tilley, in “The Sulfur Electrode”, R. P. Tischer, ed., Academic Press, New York 1983, pp. 236–322.

    Google Scholar 

  32. J. L. Sudworth, and A. R. Tilley, “The Sodium Sulfur Battery”, Chapman and Hill, London, 1985.

    Google Scholar 

  33. G. Mamantov, and R. Osteryoung in “Characterization of Solutes in Non-Aqueous Solvents”, G. Mamantov, ed., Plenum Press, New York 1978, pp. 223–249.

    Google Scholar 

  34. J. Giner, and G. L. Holleck, NASA Report CR 1541, March 1970.

    Google Scholar 

  35. G. D. Brabson, A.A. Fannin Jr, L. A. King, and D. W. Seegmiller, Ext. Abs. No 26, Electrochem. Soc. Proc., Vol. 73–1, Chicago (1973), p. 61.

    Google Scholar 

  36. J. J. Werth, U.S. Pat. 3,847,667, 1974; U.S. Pat. 3,878,984, 1975.

    Google Scholar 

  37. L. Redey, I. Porubszky, and I. Molner, 9th Intern. Power Sources Symp., Brighton, England, September 17–19, 1974.

    Google Scholar 

  38. J. Greenberg, U.S. Patent 3,573, 986 (1971); U.S. Patent 3,635,765 (1972).

    Google Scholar 

  39. G.D. Brabson, J. K. Erbacher, L.A. King, and D. W. Seegmiller, F.J. SRC Technical Report,76–0002, January 1976.

    Google Scholar 

  40. R. O. Miller, NASA Thec. Memo., TMS-3245 (1975).

    Google Scholar 

  41. J. Werth, Research Report, 109-2–1, Electric Power Research Institute, June 1975.

    Google Scholar 

  42. J. Werth, Proceedings of the Symposium and Workshop on Advanced Battery Research and Design, Argonne National Lab., Report No. ANL 76–8, March 1976, p. B-263.

    Google Scholar 

  43. G. Mamantov, R. Marassi, and J. Q. Chambers, U.S. Patent, No. 3,966,491 (1976).

    Google Scholar 

  44. G. Mamantov, and R. Marassi, U.S. Patent, No. 4,063,005 (1977).

    Google Scholar 

  45. G. Mamantov, R. Marassi, M. Matsunaga, Y. Ogata, J. P. Wiaux, and E. J. Frazer, J. Electrochem. Soc., 127, 2319 (1980).

    Article  CAS  Google Scholar 

  46. R. Marassi, G. Mamantov, and J. Q. Chambers, Inorg. Nucl. Chem. Lett.,11, 245 (1975).

    Article  CAS  Google Scholar 

  47. R. Marassi, G. Mamantov, M. Matsunaga, S.E. Springer, and J. P. Wiaux, J. Electrochem. Soc., 126, 231 (1979).

    Article  CAS  Google Scholar 

  48. K. A. Paulsen, and R. A. Osteryoung, J. Am. Chem. Soc.,98, 6866 (1976).

    Article  CAS  Google Scholar 

  49. K. Tanemoto, R. Marassi, C. B. Mamantov, Y. Ogata, M. Matsunaga, J. P. Wiaux, and G. Mamantov, J. Electrochem. Soc., 129, 2237 (1982).

    Article  CAS  Google Scholar 

  50. V. E. Norvell, K. Tanemoto, G. Mamantov, and L. Klatt, J. Electrochem. Soc.,128, 1254 (1981).

    Article  CAS  Google Scholar 

  51. R. Huglen, F. W. Poulsen, G. Mamantov, R. Marassi, and G. M. Begun, Inorg. Nucl. Chem. Lett.,14, 167 (1978).

    Article  CAS  Google Scholar 

  52. K. Tanemoto, A. Katagiri, and G. Mamantov, J. Electrochem. Soc., 130, 890 (1983).

    Article  CAS  Google Scholar 

  53. R. W. Berg, S. von Winbush, and N. J. Bjerrum, Inorg. Chem., 19, 2688 (1980).

    Article  CAS  Google Scholar 

  54. G. Mamantov, K. Tanemoto, and Y. Ogata, J. Electrochem. Soc., 130, 1528 (1983).

    Article  CAS  Google Scholar 

  55. G. Mamantov, and J. Hvistendahl, J. Electroanal. Chem., 168, 451 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Marassi, R., Zamponi, S., Berrettoni, M. (1987). Molten Salt Batteries. In: Mamantov, G., Marassi, R. (eds) Molten Salt Chemistry. NATO ASI Series, vol 202. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3863-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3863-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8217-4

  • Online ISBN: 978-94-009-3863-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics