Skip to main content

The effect of methotrexate on purine and pyrimidine deoxyribonucleoside triphosphate pools and on cell viability and cell-phase distribution in malignant human T- and B-lymphoblasts

  • Chapter
The Role of Pharmacology in Pediatric Oncology

Part of the book series: Developments in Oncology ((DION,volume 44))

  • 68 Accesses

Abstract

Methotrexate (MTX) and 6-mercaptopurine (6-MP) are widely used in the maintenance treatment of acute lymphoblastic leukemia (ALL) in children. Based on their biochemical interactions there are reasons to support a combination therapy of both drugs. MTX binds tightly to dihydrofolate reductase, the enzyme that catalyses the reduction of dihydrofolate to tetrahydrofolate. Tetrahydrofolate coenzymes are required for one-carbon transfer reactions in purine de novo synthesis and thymidylate biosynthesis (Figure 1). As a consequence a purine-less and a thymidylate-less state will occur, ultimately resulting in inhibition of DNA biosynthesis [1–10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sartorelli AC, Le Page GA: Amethopterin on the purine biosynthesis of susceptible and resistant TA3 ascites cells. Cancer Res 18: 1336–1339, 1958.

    PubMed  CAS  Google Scholar 

  2. Werkheiser WC: The biochemical, cellular and pharmacological action and effects of the folic acid antagonists. Cancer Res 23: 1277–1285, 1963.

    PubMed  CAS  Google Scholar 

  3. Borsa J, Whitmore GF: Studies relating to the mode of action of methotrexate. II. Studies in sites of action on L-cells in vitro. Mol Pharmacol 5: 303–317, 1969.

    PubMed  CAS  Google Scholar 

  4. Cohen SS: On the nature of thymidineless death. Ann NY Acad Sci 186: 292–301, 1971.

    Article  CAS  Google Scholar 

  5. Hryniuk WM: The mechanism of action of methotrexate in cultured L5178Y leukemia cells. Cancer Res 35: 1085–1092, 1975.

    PubMed  CAS  Google Scholar 

  6. Hryniuk WM, Brox LW, Henderson JF, Tamaoki T: Consequences of methotrexate inhibition of purine biosynthesis in L5178Y cells. Cancer TCancer Res 35: 1427–1532, 1975.

    CAS  Google Scholar 

  7. White JC, Loftfield S, Goldman ID: The mechanism of action of methotrexate. III. Requirement of free intra-cellular methotrexate for maximal suppression of 14C-formate incorporation into nucleic acids and protein. Mol Pharmacol 11: 387–297, 1975.

    Google Scholar 

  8. Moran RG, Mulkins M, Heidelberger C: Role of thymidylate synthetase activity in development of methotrexate cytotoxicity. Proc Natl Acad Sci USA 76: 5924–5928, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Cha S, Kim SY, Kornstein SG, Kantoff PW, Im KH, Nagub FHM: Kinetic parameters of dihydrofolate reductase inhibited by methotrexate, an example of equilibrium study. Biochem Pharmacol 30: 1507–1515, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Chabner BA: Methotrexate. In: Pharmacologic principles of cancer treatment. Chabner. Saunders, Philadelphia, 229–255, 1982.

    Google Scholar 

  11. Buesa-Perez JM, Leyva A, Pinedo HM: Effect of methotrexate on 5-phosphoribosyl-l-pyrophosphate levels in LI210 leukemia cells in vitro. Cancer Res 40: 139–144, 1980.

    PubMed  CAS  Google Scholar 

  12. De Abreu RA, Van Baal JM, Bakkeren JAJM, De Bruyn CHMM, Schetlen EDAM: High-performance liquid chromatographic assay for identification and quantitation of nucleotides in lymphocytes and malignant lymphoblasts. J Chromatogr 227: 45–52, 1982.

    Article  PubMed  Google Scholar 

  13. Hillen HFP, Wessels J, Haanen C: Bone marrow proliferation patterns determined by pulse photocytometry in acute myeloblasts leukemia. Lancet ii: 609–611, 1975.

    Article  Google Scholar 

  14. Skoog KL, Bjursell G, Nordenskjold BA: Cellular deoxyribonucleotide triphosphate pool levels and DNA synthesis. Adv Enzyme Regul 12: 345–354, 1974.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor IW, Slowiaczek P, Francis PR, Tattersall MHN: Biochemical and cell cycle pertubations in methotrexate-treated cells. Mol Pharmacol 21: 204–210, 1983.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

De Abreu, R.A., Bökkerink, J.P.M., Bakker, M.A.H., Hulscher, T.W., Van Baal, J.M. (1987). The effect of methotrexate on purine and pyrimidine deoxyribonucleoside triphosphate pools and on cell viability and cell-phase distribution in malignant human T- and B-lymphoblasts. In: Poplack, D.G., Massimo, L., Cornaglia-Ferraris, P. (eds) The Role of Pharmacology in Pediatric Oncology. Developments in Oncology, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4267-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4267-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8395-9

  • Online ISBN: 978-94-009-4267-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics