Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 112))

  • 124 Accesses

Abstract

Ion implantation modifies the electric and atomic structures of solids and it potentially has various important scientific and technological applications. However, for a successful application of ion implantation it is necessary to understand well the physical and chemical mechanisms involved. At present, the low-energy mechanisms of the atomic collisions phenomena in solids is perhaps the least understood domain of ion implantation. This is partly due to the complexity of the mechanisms involved at low energies in which the energetic atoms and their cascade atoms end the “slowing-down” process and begin the “thermalization” process where the various chemical forces dominate the purely collisional physical forces in a much larger time frame. Also, at present, the analytically available solution for the transport of charged particles does not adequately represent the low-energy region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Lindhard, V. Nielsen, M. Scharff and P. V. Thomsen, K. Danske Vidensk. Selsk; Mat.-Fys. Meddr. 33 (1968) 1.

    Google Scholar 

  2. P. Sigmund, Phys. Rev. 184 (1969) 383; 187 (1969) 768.

    Article  Google Scholar 

  3. P. Sigmund, M. T. Matthies and D. L. Philips, Rad. Effects 11 (1971) 39.

    Article  CAS  Google Scholar 

  4. P. Sigmund, Rev. Roum. Phys. 17 (1972) 823, 969, 1079.

    CAS  Google Scholar 

  5. G. Carter, J. N. Baruah and W. A. Grant, Rad. Effects, 16 (1972) 107.

    Article  CAS  Google Scholar 

  6. A. Gras-Marti, J. J. Jimenez-Rodriguez, J. Peon-Fernandez, M. Rodriguez-Vidal, N. P. Tognetti, G. Carter, M. J. Nobes and D. G. Armour, Vacuum, 32 (1982) 433.

    Article  Google Scholar 

  7. U. Littmark and W. O. Hofer, Nucl, Instr. and Meth. 170 (1980) 177.

    Article  CAS  Google Scholar 

  8. K. Wittmaack, Nucl. Instr. and Meth. B7 /8 (1985) 779.

    Google Scholar 

  9. H. H. Andersen in: Ion Implantation and Beam Processing, eds., J. S. Williams and J. M. Poate (Academic Press Australia) Chapter 6 (1984) 127.

    Google Scholar 

  10. H. H. Andersen in: SPIG 1980, ed. M. Matic, Boris Kidric Inst. Nucl. Sci. (Beograd, 1980 ) 421.

    Google Scholar 

  11. Z. L. Liau and J. W. Mayer in: Treatise on Material Science and Technology, ed. J. K. Hirvonen, (Academic Press, Inc.) Vol. 18 (1980) 17.

    Google Scholar 

  12. M. T. Robinson and O. S. Oen, Jour, of Nucl. Mat. 110 (1982) 147.

    Article  CAS  Google Scholar 

  13. S. R. Elliot, Physics of Amorphous Materials ( Longman Inc., New York ) 1984.

    Google Scholar 

  14. W. L. Johnson, Y. T. Cheng, M. Van Rossum and M-A. Nicolet, Nucl. Instr. and Meth. B7 /8 (1985) 657.

    Google Scholar 

  15. H. Weidersich, Nucl. Instr. and Meth. B7 /8 (1985) 1.

    Google Scholar 

  16. R. Kelly, Rad. Effects, 80 (1984) 273.

    Article  CAS  Google Scholar 

  17. N. Andersen and P. Sigmund, Kgl. Danske Vid. Selsk, Mat. Fys. Medd, 39 (1974) No. 3.

    Google Scholar 

  18. G Bell and S. Glasstone, (1970) Nuclear Reactor Theory, Van Nostrand, New York.

    Google Scholar 

  19. M. M. R. Williams, Progress in Nucl. Ener., 3 (1979) 1.

    Article  CAS  Google Scholar 

  20. M. M. R. Williams, J. Phys. A; Math. Gen. 9 (1976) 771.

    Article  CAS  Google Scholar 

  21. M. M. R. Williams, Annals of Nucl. Ener., 5 (1978) 149.

    Article  CAS  Google Scholar 

  22. J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems, (Addison-Wesley Publ. Co.) 1969.

    Google Scholar 

  23. H. Kahn, Applications of Monte Carlo, Rand Corporation (1954).

    Google Scholar 

  24. M. L. Roush, F. Davarya, O. F. Goktepe and T. D. Andreadis, Nucl. Inst, and Meth. 209 /210 (1983) 67.

    Google Scholar 

  25. P. Sigmund in: SIMS IV, eds., A. Benninghoven, J. Okano, R. Shimizu, and H. W. Werner (Springer-Verlag Berlin) (1984) 2.

    Google Scholar 

  26. M. Urbassek, Nucl. Instr. and Meth. B4 (1984) 356.

    Google Scholar 

  27. T. J. Hoffmann, H. L. Dodds, Jr., M. T. Robinson and D. K. Holmes, Nucl. Sci. and Engin. 68 (1978) 204.

    Google Scholar 

  28. O. Goktepe, T.D. Andreadis, M. Rosen and G.P. Mueller and M.L. Roush, Nucl. Instr. and Meth. (in press)

    Google Scholar 

  29. M. Rosen, G.P. Mueller, M. L. Roush, T. D. Andreadis and O.F. Goktepe, Nucl. Instr. and Meth (in press)

    Google Scholar 

  30. O. F. Goktepe and M. L. Roush, Nucl. Instr. and Meth. B7 /8 (1985) 803.

    Google Scholar 

  31. G. P. Mueller, Nucl. Instr. and Meth. 170 (1980) 389.

    Article  CAS  Google Scholar 

  32. J. P. C. Kleijnen, Statistical Techniques in Simulation, (Marcel Dekker, Inc. New York, 1974 ).

    Google Scholar 

  33. D. Harrison, Rad. Effects 70 (1983) 1.

    Article  CAS  Google Scholar 

  34. J. R. Beeler, Computer Experiment Methods, North-Holland, Amsterdam, 1983.

    Google Scholar 

  35. J. F. Ziegler, Ion Implantation ( Academic Press, Inc., 1984 ) 51.

    Google Scholar 

  36. O. F. Goktepe, Mat. Sci. Eng. 69 (1985) 13.

    Article  CAS  Google Scholar 

  37. M. L. Roush, F. Davarya, T. D. Andreadis and O. F. Goktepe, J. Vac. Sci. Technol. A1 (1983) 491.

    Article  Google Scholar 

  38. W. Moller and W. Eckstein, Nucl. Instr. and Meth., B7 /8 (1985) 645.

    Google Scholar 

  39. M. L. Roush, O. F. Goktepe, T. D. Andreadis and F. Davarya, Nucl. Inst, and Meth. 194 (1982) 611.

    Article  CAS  Google Scholar 

  40. W. Moller and W. Eckstein, Nucl. Inst, and Meth., B2 (1984) 814.

    Google Scholar 

  41. M. L. Roush, T. D. Andreadis, F. Davarya and O. F. Goktepe, Appl. Surf. Sci. 11 /12 (1982) 235.

    Google Scholar 

  42. M. L. Roush, T. D. Andreadis, F. Davarya and O. F. Goktepe, Nucl. Instr. and Meth. 191 (1981) 135.

    Article  CAS  Google Scholar 

  43. W. Eckstein and W. Moller, Nucl. Inst, and Meth., B7 /8 (1985) 727.

    Google Scholar 

  44. O. F. Goktepe, Ph. D. Thesis (1977) (unpublished).

    Google Scholar 

  45. M. L. Roush, T. D. Andreadis and O. F. Goktepe, Rad. Effects, 55 (1981) 119.

    Article  CAS  Google Scholar 

  46. J. P. Biersack and L. G. Haggmark, Nucl. Instr. and Meth., 174 (1980) 257.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Goktepe, O.F. (1986). Ion Implantation Mechanisms and Related Computational Issues. In: Kiriakidis, G., Carter, G., Whitton, J.L. (eds) Erosion and Growth of Solids Stimulated by Atom and Ion Beams. NATO ASI Series, vol 112. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4422-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4422-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8468-0

  • Online ISBN: 978-94-009-4422-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics