Skip to main content

Algorithmic Aspects of Comparability Graphs and Interval Graphs

  • Chapter
Graphs and Order

Part of the book series: NATO ASI Series ((ASIC,volume 147))

Abstract

Comparability graphs are undirected graphs that represent the comparability relation of partial orders. They constitute an important interface between graphs and partial orders both for theoretical investigations on their structural properties, and the development of efficient algorithmic methods for otherwise NP-hard combinatorial (optimization) problems on partial orders and their comparability graphs.

The first part of the paper gives a survey of this second aspect of comparability graphs. Topics dealt with are algorithmic methods and the necessary theoretical background for comparability graph recognition, for constructing all partial orders with the same comparability graphs, for decomposing comparability graphs and partial orders, for determining comparability invariants such as order dimension or jump number by decomposition, and for solving combinatorial optimization problems on comparability graphs.

The second part deals with the related class of interval graphs, which are exactly the incomparability graphs of interval orders. Again, we represent algorithmic methods for interval graph recognition and for solving combinatorial optimization problems on these graphs.

We then demonstrate in the third part how comparability graphs and interval graphs can be used for solving specific applied problems such as the seriation problem in archeology or certain scheduling problems over partially ordered sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho, J.E. Hopcroft and J.D. Ullman (1975) The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Ma.

    Google Scholar 

  2. M. Aigner (1979) Combinatorial Theory, Springer, Berlin

    MATH  Google Scholar 

  3. M. Aigner and G. Prins (1971) Uniquely partially orderable graphs, J. London Math. Soc. 2, 260–266

    Article  MathSciNet  Google Scholar 

  4. J.C. Arditti (1976) Partially ordered sets and their comparability graphs, their dimension and their adjacency, Proc.Colloq. Int. CNRS., Problemes Combinatoires et Theorie des Graphes, Orsay, France.

    Google Scholar 

  5. J.C. Arditti and H.A. Jung (1980) The dimension of finite and infinite comparability graphs, J.London Math. Soc. 21, 31–38

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Ashbacher (1976) A homomorphism theorem for finite graphs, Proc. Amer. Math. Soc.54, 468–470

    Article  MathSciNet  Google Scholar 

  7. R.L. Ashenhurst (1959) The decomposition of switching functions, in: Proceedings of the International Symposium on the Theory of Switching (Part I), Harvard University Press, Cambridge.

    Google Scholar 

  8. K.A. Baker, P.C. Fishburn and F.S. Roberts (1971) Partial orders of dimension 2, Networks 2, 11–28

    Article  MathSciNet  Google Scholar 

  9. K.R. Baker (1974) Introduction to Sequencing and Scheduling, Wiley, New York

    Google Scholar 

  10. E. Balas (1971) Project scheduling with resource constraints, in: E.M-L. Beale (ed.) Applications of Mathematical Programming, The English University Press, London, 187–200

    Google Scholar 

  11. R.E. Barlow and F. Proschan (1975) Statistical Theory of Reliability and Life Testing (Probability Models) Holt, Rinehart and Winston, New York

    Google Scholar 

  12. J.P. Barthélemy, C. Flament and B. Monjardet (1982) Ordered sets and social sciences, in [Ri1], 721–758

    Google Scholar 

  13. M. Bartusch (1981) An algorithm for generating all maximal independent subsets of a poset, Computing 26, 343–354

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Bartusch (1983) Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln, Thesis Techn. Univ. of Aachen

    Google Scholar 

  15. C. Berge(1973) Graphs and Hypergraphs, North Holland, Amsterdam

    MATH  Google Scholar 

  16. Z.W. Birnbaum and J.D. Esary (1965) Modules of coherent binay systems, SIAM J. Applied Math. 13, 444–462

    Article  MATH  Google Scholar 

  17. A. Blass (1978) Graphs with unique maximal clumpings, J.Graph Th. 2, 19–24

    Article  MathSciNet  MATH  Google Scholar 

  18. K.P. Bogart (1982) Some social science applications of ordered sets, in [Ri1], 759–787

    Google Scholar 

  19. B. Bollobas (1978) Extremal Graph Theory, Academic Press,London

    MATH  Google Scholar 

  20. S. Booth and S. Lueker (1976) Testing for the consectutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J.Comput. Syst. Sci. 13, 335–379

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Buer and R.H. Möhring (1983) A fast algorithm for the decomposition of graphs and posets, Math. Oper. Res. 8, 170–184

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Chein and M. Habib (1980) The jump number of dags and posets: an introduction, Ann. of Discrete Math. 9, 189–194

    Article  MathSciNet  MATH  Google Scholar 

  23. J.E. Cohen, J. Komlós and T. Mueller (1979) The probability of an interval graph and why it matters, Proc. Sympos. Pure Math. 34, 97–115, Amer. Math. Soc., Providence, R.I.

    Google Scholar 

  24. R.W. Conway, W.L. Maxwell and L.W. Miller (1967) Theory of Scheduling, Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  25. D. Coppersmith and S. Winograd (1982) On the asymptotic complexity of matrix multiplication, SIAM J. Computing 11, 472–492

    Article  MathSciNet  MATH  Google Scholar 

  26. D.G. Corneil, H. Lerchs and L. Stewart Burlingham (1981) Complement reducible graphs, Discr. Appl. Math. 3, 163–174

    Article  MATH  Google Scholar 

  27. D.D. Cowan, L.O. James and R.G. Stanton (1972) Graph decomposition for undirected graphs, in: F. Hoffmann, R.B. Levow (eds.), 3rd South-Eastern Conf. Combinatorics, Graph Theory and Computing, Utilitas Math., Winnipeg, 281–290

    Google Scholar 

  28. W.H. Cunningham (1982) Decomposition of directed graphs, SIAM J. Algebraic and Discrete Methods 3, 214–228

    Article  MathSciNet  MATH  Google Scholar 

  29. W.H. Cunningham and J. Edmonds (1980) A combinatorial decomposition theory, Can. J. Math. 32, 734–765

    Article  MathSciNet  MATH  Google Scholar 

  30. H.A. Curtis (1962) A New Approach to the Design of Switching Circuits, van Nostrand, Princeton

    Google Scholar 

  31. R.P. Dilworth (1950) A decomposition theorem for partially ordered sets, Ann. Math. Ser. 251, 161–166

    Article  MathSciNet  Google Scholar 

  32. B. Dushnik and E. Miller (1941) Partially ordered sets, Amer. J. Math. 63, 600–610

    Article  MathSciNet  Google Scholar 

  33. S.E. Elmaghraby (1977) Activity Networks, Wiley, New York

    MATH  Google Scholar 

  34. S. Even (1979) Graph Algorithms, Pitman, London

    MATH  Google Scholar 

  35. U. Faigle, G. Gierz and R. Schrader (1983) Algorithmic approaches to setup minimization, Report No. 83297-OR, Institut für Ökonometrie und Operations Research, University of Bonn

    Google Scholar 

  36. U. Faigle and R. Schrader (1983) Comparability graphs and order invariants, Report No. 83308-0R, Institut für Ökonometrie und Operations Research, University of Bonn

    Google Scholar 

  37. P.C. Fishburn (1970) Intransitive indifference in preference theory: A survey. Oper.Res. 18, 207–228

    Article  MathSciNet  MATH  Google Scholar 

  38. L.R. Ford and D.R. Fulkerson (1962) Flows in Networks, Princeton Univ. Press, Princeton, New Jersey

    MATH  Google Scholar 

  39. A. Frank (1976) Some polynomial algorithms for certain graphs and hypergraphs, Proc. 5th British Comb. Conf., Congr. Num. No. XV, Utilitas Math., Winnipeg, 211–226

    Google Scholar 

  40. D.R. Fulkerson (1971) Blocking and anti-blocking pairs of polyhedra, Math. Progr.1, 168–194

    Article  MathSciNet  MATH  Google Scholar 

  41. D.R. Fulkerson (1972) Antiblocking polyhedra, J.Comb.Th. B 12, 50–71

    Article  MathSciNet  MATH  Google Scholar 

  42. D.R. Fulkerson and O.A. Gross (1965) Incidence matrices and interval graphs, Pacific J. Math. 15, 835–855

    MathSciNet  MATH  Google Scholar 

  43. T. Gallai (1967) Transitiv orientierbare Graphen, Acta Math. Acad. Scient. Hung. Tom. 18, 25–66

    Article  MathSciNet  MATH  Google Scholar 

  44. F. Gavril (1972) Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph, SIAM J. Computing 2, 180–187

    Article  MathSciNet  Google Scholar 

  45. A. Ghouilà-Houri (1962) Characterisation des graphes non orientés dont on peut orienter les arrêtes de manière à obtenir le graph d’une relation d’ordre C.R. Acad. Sci. Paris, 254, 1370–1371

    Google Scholar 

  46. P.C. Gilmore and A.J. Hoffman (1964) A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16, 539–548

    Article  MathSciNet  MATH  Google Scholar 

  47. M.C. Golumbic (1977) Comparability graphs and a new matroid, J. Combin. Theory B 22, 68–90

    Article  MathSciNet  MATH  Google Scholar 

  48. M.C. Golumbic (1977) The complexity of comparability graph recognition and coloring. Computing 18, 199–208

    Article  MathSciNet  MATH  Google Scholar 

  49. M.C. Golumbic (1980) Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York

    MATH  Google Scholar 

  50. S. Gorenstein (1972) An algorithm for project (job) sequencing with resource constraints, Oper. Res. 20, 835–850

    Article  MathSciNet  MATH  Google Scholar 

  51. W.M. Gorman (1968) The structure of utility functions, Rev. Econ. Stud. 35, 367–390

    Article  MATH  Google Scholar 

  52. P. Grillet (1969) Maximal chains and antichains, Fund.Math. 65, 157–167

    MathSciNet  MATH  Google Scholar 

  53. M. Grötschel, L. Lovasz and A. Schrijver (1981) The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1, 169–197

    Article  MathSciNet  MATH  Google Scholar 

  54. U.I. Gupta, D.T. Lee and J.Y.-T. Leung (1982) Efficient algorithms for interval graphs and circular arc graphs, Networks 12, 459–467

    Article  MathSciNet  MATH  Google Scholar 

  55. R. Gysin (1977) Dimension transitiv orientierbarer Graphen, Acta Math. Aca. Sci. Hung 29, 313–319

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Habib (1982) Comparability invariants, preprint

    Google Scholar 

  57. M. Habib and M.C. Mauser (1979) On the x-join decomposition for undirected graphs, J. Appl. Discr. Math. 3, 198–207

    Google Scholar 

  58. P. Hanlon (1982) Counting interval graphs, Trans, Amer. Math. Soc. 272, 383–426

    Article  MathSciNet  MATH  Google Scholar 

  59. R.L. Hemminger (1968) The group of an X-join of graphs, J. Comb. Th. 5, 408–418

    Article  MathSciNet  MATH  Google Scholar 

  60. T. Hiraguchi (1951) On the dimension of partially ordered sets, Sci. Rep. Kanazawa Univ. 1, 77–94

    MathSciNet  MATH  Google Scholar 

  61. H. Igelmund and F.J. Radermacher (1983) Preselective strategies for the optimization of stochastic project networks under resource constraints, Networks 13, 1–28

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Kaerkes (1977) Netzplan Theory, Methods of Oper. Res., 27, 1–65

    MathSciNet  Google Scholar 

  63. R. Kaerkes and B. Leipholz (1977) Generalized network functions in flow networks, Methods of Oper. Res. 27, 225–273

    MathSciNet  Google Scholar 

  64. R. Kaerkes and R.H. Möhring (1978) Vorlesungen über Ordnungen und Netzplantheorie, Schriften zur Informatik und Angewandten Mathematik 45, RWTH Aachen

    Google Scholar 

  65. R. Kaerkes, R.H. Möhring, W. Oberschelp, F.J. Radermacher, and M.M. Richter (1984) Netzplanoptimierung: Deterministische und stochastische Scheduling-Probleme über geordneten Strukturen, Springer Lecture Notes in Economics and Mathematical Systems, to appear

    Google Scholar 

  66. D. Kelly (1985) Comparability graphs, this volume

    Google Scholar 

  67. D. Kelly and W.T. Trotter, Jr. (1982) Dimension theory for ordered sets, in [Ri1], 171–211

    Google Scholar 

  68. D.J. Kleitmann and B.L. Rothschild (1975) Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc. 205, 205–220

    Article  MathSciNet  Google Scholar 

  69. N. Korte and R.H. Möhring (1984) A resource levelling algorithm based on interval graph recognition and generation, preprint, Techn. Univ. of Aachen

    Google Scholar 

  70. E.L. Lawler (1976) Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  71. E.L. Lawler (1978) Sequencing jobs to minimize total weighted completion time subject to precedence constraints, Ann. Discrete Math.2, 75–90

    Article  MathSciNet  MATH  Google Scholar 

  72. E.L Lawler and J.K. Lenstra (1982) Machine scheduling with precedence constraints, in [Ri1], 655–675

    Google Scholar 

  73. E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan (1982) Recent developments in deterministic sequencing and scheduling: A survey, in M.A.H. Dempster et al. (eds.) Deterministic and Stochastic Scheduling, Reidel, Dordrecht

    Google Scholar 

  74. B. Leclerc and B. Monjardet (1973) Orders “C.A.C.”, Fund. Math. 79, 11–22

    MathSciNet  MATH  Google Scholar 

  75. L. Lovasz (1972) A characterization of perfect graphs, J.Comb. Th.B 13, 95–98

    Article  MathSciNet  MATH  Google Scholar 

  76. N. Megiddo (1975) Tensor decomposition of cooperative games, SIAM J. Appl. Math. 29, 388–405

    Article  MathSciNet  MATH  Google Scholar 

  77. L. Mirsky (1971) A dual of Dilworth’s decomposition theorem, Amer. Math.Monthly 78, 876–877

    Article  MathSciNet  MATH  Google Scholar 

  78. J.J. Moder and C.R. Phillips (1964) Project management with CPU and PERT, Reinhold, New York

    Google Scholar 

  79. R.H. Möhring (1982) Scheduling problems with a singular solution, Ann. discrete Math. 16, 225–239

    MATH  Google Scholar 

  80. R.H. Möhring (1983) On the characterization of series-parallel networks, complement reducible graphs, and threshold graphs, Methods of Oper. Res. 45, 287–291

    Google Scholar 

  81. R.H. Möhring (1984) Almost all comparability graphs are UPO, preprint, to appear in discrete Math.

    Google Scholar 

  82. R.H. Möhring (1984) Minimizing costs of resource requirements in project networks subject to a fixed completion time, Oper. Res. 32, 89–120

    Article  MATH  Google Scholar 

  83. R.H. Möhring and F.J. Radermacher (1983) Dimension, reversibility and chain-equivalence of posets, and connections with homomorphism, in: M. Beckmann, W. Eichhorn and W. Krelle (eds.) Mathematische Systeme in der Ökonomie, Konigstein (Ts), 415–432

    Google Scholar 

  84. R.H. Möhring and F.J. Radermacher (1982) Substitution decomposition of discrete structures and connections with combinatorial optimization, preprint, to appear in Ann. Discrete Math.

    Google Scholar 

  85. R.H. Möhring and F.J. Radermacher (1984) Scheduling problems with resource-duration interaction, Methods of Oper. Res. 48, 423–452

    MATH  Google Scholar 

  86. C.L. Monma and J.B. Sidney (1979) Sequencing with series- parallel precedence constraints, Math, of Oper. Res. 4, 215–224

    Article  MathSciNet  MATH  Google Scholar 

  87. J.H. Muller and J. Spinrad (1984) On-line modular decomposition, Technical report GIT-ICS-84/11, Georgia Institute of Technology

    Google Scholar 

  88. C.H. Papadimitriou and M. Yannakakis (1979) Scheduling in- terval-ordered tasks, SIAM J. Comp. 8, 405–409

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Patterson, R. Slowinski, B. Talbot and J. Weglarz (1982) An Algorithm for a general class of precedence and resource constrained scheduling problems, preprint

    Google Scholar 

  90. A. Pnueli, A. Lempel and W. Even (1971) Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math. 23, 160–175

    Article  MathSciNet  MATH  Google Scholar 

  91. F.J. Radermacher (1978) Kapazitätsoptimierung in Netzplänen, Math. Syst. in Econ. 40, Anton Hain, Meisenheim

    Google Scholar 

  92. F.J. Radermacher (1981) Ein Faktorisierungssatz für die Möbiusfunktion, paper presented at the “23. Kurztagung über Allgemeine Algebra”, Kaiserslautern

    Google Scholar 

  93. F.J. Radermacher (1981) Cost-dependent essential systems of ES-strategies for stochastic scheduling problems, Methods of Oper. Res. 42, 17–31

    MATH  Google Scholar 

  94. F.J. Radermacher (1982) Optimization of resource constrained project networks, preprint, Techn. Univ. of Aachen

    Google Scholar 

  95. F.J. Radermacher and H.G. Spelde (1974) Reduktion von Fluß-netzplänen, Proceedings in Oper. Res. 3, 177–186

    Google Scholar 

  96. R.C. Read and N.C. Wormland (1980) Catalogues of graphs and digraphs, Discrete Math. 31, 224–225

    Article  MathSciNet  Google Scholar 

  97. A.H.G. Rinnooy Kan (1976) Machine Scheduling Problems: Classification, Complexity and Computation, Nijhoff, The Hague

    Google Scholar 

  98. J. Riordan (1958) An Introduction to Combinatorial Analysis, J. Wiley & Sons, New York

    Google Scholar 

  99. I. Rival (ed.) (1982) Ordered Sets, Reidel. Dordrecht

    MATH  Google Scholar 

  100. I. Rival (1982) Optimal linear extensions by interchanging chains, Proc. Amer. Math. Soc. 89, 387–394

    Article  MathSciNet  Google Scholar 

  101. F.S. Roberts (1976) Discrete Mathematical Models, with Applications to Social, Biological and Environmental Problems, Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  102. D.J. Rose, R.E. Tarjan and G.S. Lueker (1976) Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5, 266–283

    Article  MathSciNet  MATH  Google Scholar 

  103. G. Sabidussi (1961) Graph derivatives, Math. Zeitschrift 76, 385–401

    Article  MathSciNet  MATH  Google Scholar 

  104. L.S. Shapley (1967) On Committees, in New Methods of Thought and Procedure, F. Zwicky, A. G. Wilson (eds.) Springer Verlag, Berlin, New York, 246–270

    Google Scholar 

  105. L.N. Shevrin and N.D. Filippov (1970) Partially ordered sets and their comparability graphs, Siber. Math. J. 11, 497–509

    Article  MATH  Google Scholar 

  106. A.W. Shogan (1978) A decomposition algorithm for network reliability analysis, Networks 8, 231–252

    Article  MathSciNet  MATH  Google Scholar 

  107. J. Spinrad (1982) Two dimensional partial orders, Ph.D. Thesis, Princeton University

    Google Scholar 

  108. J. Spinrad (1983) On comparability and permutation graphs, Technical Report GIT-ICS-83/10, Georgia Institute of Technology

    Google Scholar 

  109. R.P. Stanley (1973) A Brylawski decomposition for finite ordered sets, Discrete Math. 4, 77–82

    Article  MathSciNet  MATH  Google Scholar 

  110. K. Strassner (1981) Zur Strukturtheorie endlicher nichtdeter-ministischer Automaten I: Zum Verband der 1-Kongruenzen von endlichen Relationalsystemen, J. Information Processing and Cybernetics(EIK) 17, 113–120

    MathSciNet  MATH  Google Scholar 

  111. M.M. Syslo (1984) Minimizing the jump number for partially ordered sets: a graph-theoretic approach, ORDER 1, 7–20.

    Article  MathSciNet  MATH  Google Scholar 

  112. M.M. Syslo (1985) A graph theoretic approach to the jump number problem, this volume

    Google Scholar 

  113. M.M. Syslo, N. Deo and J.S. Kowalik (1983) Discrete Optimization Algorithms with Pascal Programs, Prentice Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  114. W.T. Trotter,Jr., J.I. Moore,Jr. and P.Sumner (1976) The dimension of a comparability graph, Proc. Amer. Math. Soc, 60, 35–38

    Article  MathSciNet  Google Scholar 

  115. J. Valdes, R.E. Tarjan and E.L. Lawler (1979) The recognition of series-parallel digraphs. Proc. 11th Annual ACM Syrrrp. on Theory of Comp. ACM, 1–12

    Google Scholar 

  116. R. Wille (1983) Lexicographic decomposition of ordered sets (graphs), Preprint No 705, Fachbereich Mathematik, Techn. Univ. of Darmstadt

    Google Scholar 

  117. M. Yannakakis (1982) The complexity of the partial order dimension problem, SIAM J. Alg. Disc. Math. 3, 351–358

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Möhring, R.H. (1985). Algorithmic Aspects of Comparability Graphs and Interval Graphs. In: Rival, I. (eds) Graphs and Order. NATO ASI Series, vol 147. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5315-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5315-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8848-0

  • Online ISBN: 978-94-009-5315-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics