Skip to main content

Null Hypotheses in Ecology

  • Chapter
Conceptual Issues in Ecology

Abstract

Null hypotheses entertain the possibility that nothing has happened, that a process has not occurred, or that change has not been produced by a cause of interest. Null hypotheses are reference points against which alternatives should be contrasted. They are used not only in statistics but in all sciences. “This hypothesis…is… characteristic of all experimentation” (Fisher 1935). In physics for example, an important null hypothesis of the post-Newtonian era was that time is a variable which is independent of all other factors. Modern physics is based upon the alternative hypothesis that time can be a function of space and relative velocities. Another famous null hypothesis, that the speed of light is independent of its direction, inspired the Michelson-Morley experiments, which failed to disprove it. An example in chemistry is that there is no molecular property unique to life, that any synthesis by protoplasm can be repeated in the test tube. Modern biochemistry has failed to disprove this null hypothesis. But the term null hypothesis sounds odd in reference to much of physics and chemistry. It is not found in textbooks nor is it used frequently in conversation about these disciplines. Though all sciences use null hypotheses in principle, the ‘atomistic’1 sciences of physics and chemistry often use them implicitly. In atomistic sciences, fundamental units are simple and quite similar to one another, and effects of phenomena are commonly so distinct that the null state of no effect does not need special recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abele, L. G. and K. Walters: 1979, ‘The stability-time hypothesis: reevaluation of the data’, Amer. Natur. 114, 559.

    Article  Google Scholar 

  • Abbot, I., Abbott, L. K., and P. R. Grant: 1977, ‘Comparative ecology of the Galapágos ground finches’, Ecol. Monog. 47, 151–184.

    Article  Google Scholar 

  • Anderson, S.: 1974, ‘Patterns of faunal evolution’, The Quart. Rev. Biol. 49, 311–332.

    Article  Google Scholar 

  • Auerbach, M. A.: 1979, ‘Some real communities are unstable’, Nature 279, 821–822.

    Article  Google Scholar 

  • Beddington, J. R., Free, C. A., and J. H. Lawton: 1978, ‘Characteristics of successful natural enemies in models of biological control of insect pests’, Nature 273, 513–519.

    Article  Google Scholar 

  • Bowman, R. I.: 1961, ‘Morphological variation and adaptation in the Galapágos finches’, Univ. Calif. Pub. Zool. 59, 1–302

    Google Scholar 

  • Brown, W. H., and E. O. Wilson: 1956, ‘Character displacement’, Syst. Zool. 5, 48–64.

    Article  Google Scholar 

  • Connell, J.: 1961, ‘The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatusEcology 42, 710–723.

    Google Scholar 

  • Connor, E. F. and D. S. Simberloff: 1979, ‘The assembly of species communities: chance or competition? Ecology 60, 1132–1141.

    Article  Google Scholar 

  • Cook, R. E.: 1969, ‘Variation in species density of North American birds’, Syst. Zool. 18, 63–84.

    Article  Google Scholar 

  • Darwin, C.: 1859, The Origin of Species, Murray, London.

    Google Scholar 

  • Dayton, P. K.: 1973, ‘Two cases of resource partitioning in an intertidal community: making the right predictions for the wrong reasons’, The American Naturalist 107, 662–670.

    Article  Google Scholar 

  • Diamond, J. M.: 1975, ‘Assemble rules of species communities’, pp. 342–344 in M. Cody and J. Diamond (eds.), Ecology and Evolution of Communities, Harvard Univ. Press., Cambridge Mass.

    Google Scholar 

  • Diamond, J. M.: 1978, ‘Niche-shifts and the rediscovery of interspecific competition’, American Scientist 66, 322–331.

    Google Scholar 

  • Elton, C. S.: 1946, Journ. Anim. Ecol. 15, 54–68.

    Article  Google Scholar 

  • Emlen, J. M.: 1966, ‘The role of time and energy in food preference’, Amer. Natur. 107, 580–584.

    Google Scholar 

  • Fenchel, T.: 1975, ‘Character displacement and coexistence in mud snails’, Oecologia 20, 19–32.

    Article  Google Scholar 

  • Fisher, R. A.: 1935, The Design of Experiments ii, Oliver and Boyd, London.

    Google Scholar 

  • Gause, G. F.: 1934, The Struggle for Existence, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Grant, P. R.: 1966, ‘Ecological compatibility of bird species on islands’, Amer. Natur. 100, 451–462.

    Article  Google Scholar 

  • Grant, P. R.: 1972, ‘Convergent and divergent character displacement’, Biol. Journ. Linn. Soc. 4, 39–68.

    Article  Google Scholar 

  • Greenwood, J. J. D.: 1968, ‘Coexistence of avian congeners on islands’, Amer. Natur. 102, 591–592.

    Article  Google Scholar 

  • Heatwole, H. and R. Levins: 1972, ‘The trophic structure, stability and faunal change during recolonization’, Ecology 53, 531–534.

    Article  Google Scholar 

  • Heck, K. L.: 1976, ‘Some critical considerations of the theory of species packing’, Evol. Theory 1, 247–258.

    Google Scholar 

  • Heck, K. L., Van Belle, G., and D. Simberloff: 1975, ‘Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size’, Ecology 56, 1451–1461.

    Article  Google Scholar 

  • Huey, R. B., and E. R. Pianka: 1974, ‘Ecological character displacement in a lizard’, Amer. Zool. 14, 1127–1136.

    Google Scholar 

  • Hutchinson, G. E.: 1959, ‘Homage to Santa Rosalia, or why are there so many kinds of animals? Amer. Natur. 93, 145–159.

    Article  Google Scholar 

  • Janzen, D. H.: 1966, ‘Coevolution of mutualism between ants and acacias in Central America’, Evolution 20, 249–275.

    Article  Google Scholar 

  • Kuhn, T. S.: 1962, The Structure of Scientific Revolutions, 2nd ed., Univ. Chicago Press.

    Google Scholar 

  • Lack, D.: 1947, The Galapágos Finches, Cambridge Univ. Press.

    Google Scholar 

  • Lawlor, L. R.: 1978, ‘A comment on randomly constructed model ecosystems’, The American Naturalist 112, 445–447.

    Article  Google Scholar 

  • Levin, S. A.: 1974, ‘Dispersion and population interactions’, The Amer. Natur. 108, 207–228.

    Article  Google Scholar 

  • MacArthur, R. H. and E. O. Wilson: 1967, The theory of island biogeography, Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • MacFadyen, A.: 1975, ‘Some thoughts on the behaviour of ecologists’, Journ. Anim. Ecol., 351–363.

    Google Scholar 

  • May, R. M.: 1974, Stability and Complexity in Model Ecosystems, 2nd ed., Princeton Univ. Press. Princeton, N.J.

    Google Scholar 

  • May, R. M.: 1978, ‘The evolution of ecological systems’, Scientific American 239, 160–175.

    Article  Google Scholar 

  • Moreau, R. E.: 1948, ‘Ecological isolation in a rich tropical avifauna’, Journ. Anim. Ecol. 17, 113–126.

    Article  Google Scholar 

  • Moreau, R. E.: 1966, The Bird Faunas of Africa and Its Islands, Academic Press, N.Y.

    Google Scholar 

  • Murdoch, W. W.: 1966, ‘Community structure, population control, and competition — a critique’, The Amer. Natur. 100, 219–226.

    Article  Google Scholar 

  • Paine, R. T.: 1966, ‘Food web complexity and species diversity’, Amer. Natur. 100, 65–75.

    Article  Google Scholar 

  • Peters, R. H.: 1977, ‘The unpredictable problems of tropho-dynamics’, Env. Biol. Fish. 2, 97–101.

    Article  Google Scholar 

  • Pimm, S. L., and J. H. Lawton: 1977, ‘Number of trophic levels in ecological communities’, Nature 268, 329–331.

    Article  Google Scholar 

  • Popper, K. R.: 1968, The Logic of Scientific Discovery, Hutchinson, London.

    Google Scholar 

  • Schoener, T. W.: 1965, ‘The evolution of bill size differences among sympatric congeneric species of birds’, Evolution 19, 189–213.

    Article  Google Scholar 

  • Simberloff, D. S.: 1970, ‘The taxonomic diversity of island biotas’, Evolution 24, 22–47.

    Article  Google Scholar 

  • Simberloff, D. S.: 1976, ‘Trophic structure determination and equilibrium in an arthropod community’, Ecology 57, 395–398.

    Article  Google Scholar 

  • Stearns, S. C.: 1978, ‘Life–history tactics: a review of ideas’, The Quarterly Review of Biology, 51, 3–47.

    Article  Google Scholar 

  • Strong, D. R., Szyska, L. A., and D. S. Simberloff: 1979, Tests of community-wide character displacement against null hypotheses’, Evolution, in press.

    Google Scholar 

  • Terborgh, J., Faaborg, K. and H. J. Brockmann: 1978, ‘Island colonization by lesser Antillean birds’, The Auk 95, 59–72.

    Google Scholar 

  • Williams, C. B.: 1947, ‘The generic relations of species in small ecological communities’, J. Anim. Ecol. 16: 11–18.

    Article  Google Scholar 

  • Williams, C. B.: 1951, ‘Intra-generic competition as illustrated by Moreau’s records of East African birds’, Journ. Anim. Ecol. 20, 246–253.

    Article  Google Scholar 

  • Williams, C. B.: 1964, Patterns in the Balance of Nature, Academic Press, Lond.

    Google Scholar 

  • Wilson, E. O.: 1975, Sociobiology, Harvard.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Strong, D.R. (1982). Null Hypotheses in Ecology. In: Saarinen, E. (eds) Conceptual Issues in Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7796-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7796-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-1391-9

  • Online ISBN: 978-94-009-7796-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics