Skip to main content

The Trouton Experiment, E = MC 2, and a Slice of Minkowski Space-Time

  • Chapter
Revisiting the Foundations of Relativistic Physics

Abstract

In the Fall of 1900, Frederick T. Trouton started work on an ingenious experiment in his laboratory at Trinity College in Dublin. The purpose of the experiment was to detect the earth’s presumed motion through the ether, the 19th-century medium thought to carry light waves and electric and magnetic fields. The experiment was unusual in that, unlike most of these so-called ether drift experiments, it was not an experiment in optics.1 Trouton tried to detect ether drift by charging and discharging a capacitor in a torsion pendulum at its resonance frequency, which he hoped would set the system oscillating. The basic idea behind the experiment came from George Francis FitzGerald, whose assistant Trouton was at the time. According to FitzGerald, a capacitor moving through the ether should experience an impulse, a jolt, upon being charged or discharged. Trouton’s torsion pendulum was designed to detect these jolts. Not surprisingly from a modern relativistic point of view, Trouton found no such effect. FitzGerald died in February 1901 before the experiment was concluded. It was thus left to others to try and reconcile Trouton’s result with then current electromagnetic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, Max. 1903. “Prinzipien der Dynamik des Elektrons.” Annalen der Physik 10:105–179.

    MATH  Google Scholar 

  • Butler, J. W. 1968. “On the Trouton-Noble experiment.” American Journal of Physics 36:936–941.

    Article  ADS  Google Scholar 

  • Cornille, Patrick, Jean-Louis Naudin, and Alexandre Szames. 1998. Way Back to the Future: Why Did the Trouton-Noble Experiment Fail and How to Make it Succeed. Paper presented at the Sixth Conference on the Physical Interpretations of the Relativity Theory (PIRT), London, UK, September 11–14. Forthcoming

    Google Scholar 

  • —. 1999. Stimulated Forces Demonstrated: Why the Trouton-Noble Experiment Failed and How to Make it Succeed. Paper presented at the Space Technology and Applications International Forum (STAIF), Albuquerque, NM, USA, January 31–February 4, 1999. Forthcoming.

    Google Scholar 

  • Damerow, Peter, Gideon Freudenthal, Peter McLaughlin, and Jürgen Renn. 1992. Exploring the Limits of Preclassical Mechanics. New York: Springer.

    Book  Google Scholar 

  • Darrigol, Olivier. 1995. “Henri Poincaré’s Criticism of Fin de Siècle Electrodynamics.” Studies in History and Philosophy of Modern Physics 26:1–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Einstein, Albert. 1905a. “Zur Elektrodynamik bewegter Körper.” Annalen der Physik 17:891–921. Reprinted in facsimile as Doc. 23 in Stachel et al. 1989.

    Article  ADS  MATH  Google Scholar 

  • —. 1905b. “Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?” Annalen der Physik 18:639–641. Reprinted in facsimile as Doc. 24 in Stachel et al. 1989.

    Article  ADS  Google Scholar 

  • —. 1906. “Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie.” Annalen der Physik 20:627–633. Reprinted in facsimile as Doc. 35 in Stachel et al. 1989.

    Article  ADS  MATH  Google Scholar 

  • —. 1919. “What is the Theory of Relativity?” The London Times, November 28, 1919. Reprinted in Albert Einstein. Ideas and Opinions. New York: Bonanza, 227–232.

    Google Scholar 

  • —. 1949. “Remarks Concerning the Essays Brought Together in this Co-operative Volume.” Pp. 665–688 in Albert Einstein: Philosopher-Scientist, ed. Paul Arthur Schilpp. Evanston, IL: Library of Living Philosophers.

    Google Scholar 

  • Fermi, Enrico. 1922. “Über einen Widerspruch zwischen der elektrodynamischen und der relativistischen Theorie der elektromagnetischen Masse.” Physikalische Zeitschrift 23:340–344.

    MATH  Google Scholar 

  • Fleming, Gordon. 1998. “Reeh-Schlieder meets Newton-Wigner.” Proceedings of the 1998 Meeting of the Philosophy of Science Association, Kansas City, Missouri, October 22–25, 1998. Forthcoming.

    Google Scholar 

  • Hayden, Howard C. 1994. “High Sensitivity Trouton-Noble Experiment.” Review of Scientific Instruments 65:788–792.

    Article  ADS  Google Scholar 

  • Jackson, John D. 1975. Classical Electrodynamics. 2nd edition, New York: John Wiley & Sons.

    MATH  Google Scholar 

  • Janssen, Michel. 1995. A Comparison Between Lorentz’s Ether Theory and Special Relativity in the Light of the Experiments of Trouton and Noble. Ph.D. Thesis. University of Pittsburgh.

    Google Scholar 

  • —. 1997. Reconsidering a Scientific Revolution: the Case of Einstein versus Lorentz. Unpub lished manuscript.

    Google Scholar 

  • Janssen, Michel, and John Stachel. 1999. “The Optics and Electrodynamics of Moving Bodies.” In Storia della scienza. Instituto della Enciclopedia Italiana, forthcoming.

    Google Scholar 

  • Klein, Felix. 1918. “Über die Integralform der Erhaltungssätze und die Theorie der räumlich-geschlossenen Welt.” Königliche Gesellschaft der Wissenschaften zu Göttingen. Nachrichten:394–423.

    Google Scholar 

  • Larmor, Joseph. 1902. “Can Convection Through the Æther Be Detected Electrically? Note on the Foregoing Paper.” Pp. 566–569 in The Scientific Writings of the Late George Francis FitzGerald, ed. J. Larmor. Dublin: Hodges, Figgis, & Co.; London: Longmans, Green, & Co.

    Google Scholar 

  • Laub, Jakob. 1910. “Über die experimentellen Grundlagen des Relativitätsprinzips.” Jahrbuch der Radioaktivität und Elektronik 7:405–463.

    Google Scholar 

  • Laue, Max. 1911a. “Zur Dynamik der Relativitätstheorie.” Annalen der Physik 35:524–542.

    Article  ADS  MATH  Google Scholar 

  • —. 1911b. “Ein Beispiel zur Dynamik der Relativitätstheorie.” Verhandlungen der Deutschen Phys ikalischen Gesellschaft 13:513–518.

    Google Scholar 

  • Laue, Max von. 1949. “Inertia and Energy.” Pp. 501–533 in Albert Einstein: Philosopher-Scientist, ed. Paul Arthur Schilpp. Evanston, IL: Library of Living Philosophers.

    Google Scholar 

  • Lewis, Gilbert N., and Richard C. Tolman. 1909. “The Principle of Relativity, and Non-Newtonian Mechanics.” Philosophical Magazine 18:510–523.

    Article  Google Scholar 

  • Lorentz, Hendrik Antoon. 1895. Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern. Leiden: Brill.

    Google Scholar 

  • —. 1904a. “Electromagnetische verschijnselen in een stelsel dat zich met willekeurige snelheid, kleiner dan die van het licht, beweegt.” Koninklijke Akademie van Wetenschappen te Amsterdam. Wisen Natuurkundige Afdeeling. Verslagen van de Gewone Vergaderingen 12 (1903–04):986–1009. Reprinted in translation as “Electromagnetic Phenomena in a System Moving with Any Velocity Smaller Than That of Light.” Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings 6 (1903–04):809–831.

    MATH  Google Scholar 

  • —. 1904b. “Weiterbildung der Maxwellschen Theorie. Elektronentheorie.” Vol. 5, Physik, part 2, 145–280 in Encyklopädie der mathematischen Wissenschaften, mit Einschluß ihrer Anwendungen, ed. Arnold Sommerfeld. Leipzig: Teubner, 1904–1922. Issued 16 June 1904.

    Google Scholar 

  • —. 1915. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat. A Course of Lectures Delivered in Columbia University, New York, in March and April 1906. 2d ed. Leipzig: Teubner.

    Google Scholar 

  • —. 1922. Lessen over theoretische natuurkunde aan de Rijksuniversiteit te Leiden gegeven. Vol. 6. Het relativiteitsbeginsel voor eenparige translaties (1910–1912). Adriaan D. Fokker, ed. Leiden: Brill. English translation: Lectures on Theoretical Physics. Vol. 3. London: Macmillan and Co, 1931. Page references are to this translation.

    Google Scholar 

  • Lorentz, Hendrik A., Albert Einstein, and Hermann Minkowski. 1913. Das Relativitätsprinzip. Eine Sammlung von Abhandlungen. Leipzig: Teubner.

    MATH  Google Scholar 

  • Lorentz, Hendrik A., Albert Einstein, Hermann Minkowski, and Hermann Weyl. 1922. Das Relativitätsprinzip. Eine Sammlung von Abhandlungen. 4th ed. Leipzig: Teubner. English translation: The Principle of Relativity. New York: Dover, 1952.

    MATH  Google Scholar 

  • Miller, Arthur I. 1981. Albert Einstein’s Special Theory of Relativity. Emergence (1905) and Early Interpretation (1905–1911). Reading, MA: Addison-Wesley.

    Google Scholar 

  • —. 1986. Frontiers of Physics: 1900–1911. Boston: Birkhäuser.

    Google Scholar 

  • Minkowski, Hermann. 1909. “Raum und Zeit.” Physikalische Zeitschrift 10:104–111. Reprinted in Lorentz et al. 1913, Lorentz et al, 1922.

    Google Scholar 

  • Norton, John D. 1992. “Einstein, Nordström and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation.” Archive for the History of Exact Sciences 45:17–94.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pauli, Wolfgang. 1921. “Relativitätstheorie.” Vol. 5, Physik, part 2, 539–775 in Encyklopädie der mathematischen Wissenschaften, mit Einschluß ihrer Anwendungen, ed. Arnold Sommerfeld. Leipzig: Teubner, 1904–1922. Issued 15 November 1921. Reprinted in translation, with supplementary notes, as Theory of Relativity. G. Field, trans. London: Pergamon, 1958. Page references to this reprint.

    Article  Google Scholar 

  • Planck, Max. 1908. “Bemerkungen zum Prinzip der Aktion und Reaktion in der allgemeinen Dynamik.” Deutsche Physikalische Gesellschaft. Verhandlungen 6:728–732.

    Google Scholar 

  • Poincaré, Henri. 1900a. “Sur les rapports de la physique expérimentale et de la physique mathématique.” Vol. 1, 1–29 in Rapports presentés au Congrès international de Physique réuni à Paris en 1900. Paris: Gauthier-Villars.

    Google Scholar 

  • —. 1900b. “La théorie de Lorentz et le principe de reaction.” Archives Néerlandaises des Sciences Exactes et Naturelles 2:252–278.

    Google Scholar 

  • —. 1904. “L’état actuel et l’avenir de la physique mathématique.” Bulletin des Sciences Mathématiques 28:302–324. Reprinted in translation as Chs. 7–9 of Henri Poincaré, The Value of Science. New York: Dover, 1952. Page references to this reprint.

    Google Scholar 

  • Rohrlich, Fritz. 1960. “Self-Energy and the Stability of the Classical Electron.” American Journal of Physics 28:639–643.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • —. 1965. Classical Charged Particles: Foundations of Their Theory. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Schulmann, Robert, A. J. Kox, Michel Janssen, and József Illy, eds. 1998. The Collected Papers of Albert Einstein. Vol. 8. The Berlin Years: Correspondence, 1914–1918. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Stachel, John, David C. Cassidy, Jürgen Renn, and Robert Schulmann, eds. 1989. The Collected Papers of Albert Einstein. Vol. 2. The Swiss Years: Writings, 1900–1909. Princeton: Princeton University Press.

    Google Scholar 

  • Teukolsky, Saul A. 1996. “The Explanation of the Trouton-Noble Experiment Revisited.” American Journal of Physics 64:1104–1106.

    Article  ADS  Google Scholar 

  • Trouton, Frederick T. 1902. “The Results of an Electrical Experiment, Involving the Relative Motion of the Earth and Ether, Suggested by the Late Professor FitzGerald,” Transactions of the Royal Dublin Society 7:379–384. Reprinted in: J. Larmor, ed., The Scientific Writings of the Late George Francis FitzGerald. Dublin: Hodges, Figgis, & Co.; London: Longmans, Green, & Co, 1902. Pp. 557–565. Page references are to this reprint.

    Google Scholar 

  • Trouton, Frederick T., and Henry R. Noble. 1903. “The Mechanical Forces Acting On a Charged Electric Condenser Moving Through Space.” Philosophical Transactions of the Royal Society, London 202:165–181.

    ADS  Google Scholar 

  • Warwick, Andrew. 1995. “The Sturdy Protestants of Science: Larmor, Trouton, and the Earth’s Motion Through the Ether.” Pp. 300–343 in Scientific Practice. Theories and Stories of Doing Physics, ed. Jed Buchwald. Chicago: University of Chicago Press.

    Google Scholar 

  • Whittaker, Edmund T. 1951–53. A History of the Theories of Aether and Electricity. 2 Vols. London: Thomas Nelson & Sons, Ltd.

    MATH  Google Scholar 

Download references

Authors

Editor information

Jürgen Renn Lindy Divarci Petra Schröter Abhay Ashtekar Robert S. Cohen Don Howard Sahotra Sarkar Abner Shimony

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Janssen, M. (2003). The Trouton Experiment, E = MC 2, and a Slice of Minkowski Space-Time. In: Renn, J., et al. Revisiting the Foundations of Relativistic Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0111-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0111-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1285-3

  • Online ISBN: 978-94-010-0111-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics