Skip to main content

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 16))

  • 272 Accesses

Abstract

Two fractionation models are applied to the problem of generating the widely distributed “Q-component” noble gases in meteorites from the solar-like isotopic and elemental compositions that presumably characterized the early solar accretion disk. Noble gas fractionation by mass-dependent dissipation of the solar nebula, as suggested by Ozima et al. (1998), is examined in the context of a model developed by Johnstone et al. (1998) for accretion disk photoevaporation driven by intense UV radiation from a neighboring giant star. Hydrodynamic escape of heavier species entrained in hydrogen outflow from the UV-heated outer regions of the disk can generate substantial noble gas fractionations, but they do not match the observed Q-component isotopic pattern and moreover require the physically unrealistic assumption that the fractionated gases are confined to the heated disk boundary zone, without mixing with the interior nebula, for long periods of time. It seems more likely that hydrodynamic outflow is actually established below this zone, in the body of the disk. In this case fractionations are governed by Rayleigh distillation of the entire remaining nebula, and are negligible at the time when disk erosion is halted by the gravitational potential of the young sun embedded in the disk.

A “local” model of noble gas fractionation by hydrodynamic blowoff of transient, methane-rich atmospheres outgassed from the interiors of large primitive planetesimals (Pepin, 1991) is updated and assessed against current data. Degassed atmospheres are assumed to contain isotopically solar noble gases except for an additional nucleogenic Xe component that contributes primarily to the two heaviest isotopes; there is evidence that this same component is present at varying levels in other solar-system volatile reservoirs, possibly reflecting a compositional change with time in the solar nebula. Single fixed values for the two free parameters in the blowoff modeling equations can generate fractionated Xe, Kr, Ar and Ne compositions in the residual atmosphere that closely match observed meteoritic isotopic distributions, and Q-gas elemental ratios are approximated by adsorption of fractionated gases on planetesimal surface grains using plausible values of relative Henry Law constants. Additional requirements for adsorption of sufficient absolute amounts of Q-gases on carrier grains, and their subsequent ejection to space, mixing in the nebula, and dispersal into meteorite bodies, are examined in the context of current models for body sizes and dynamical evolution in an early mass-rich asteroid belt (Chambers and Wetherill, 2001). Despite its ability to replicate isotopic compositions, uncertainties about the environments in which the blowoff model can successfully operate suggest that there is, as yet, no entirely satisfactory understanding of how the Q-component noble gases might have evolved from solar-like precursor compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Basford, J.R., Dragon J.C., Pepin R.O, Coscio M.R., Jr., and Murthy V.R.: 1973, ‘Krypton and Xenon in Lunar Fines’, Proc. Lunar Sci. Conf. 4, 1915–1955.

    ADS  Google Scholar 

  • Boss, A.P., and Vanhala, H.A.T.: 2000, ‘Triggering Protostellar Collapse, Injection, and Disk Formation’, Space Sci. Rev. 92, 13–22.

    Article  ADS  Google Scholar 

  • Boss, A.P., and Vanhala, H.A.T.: 2001, ‘Injection of Newly Synthesized Elements Into the Protosolar Cloud’, Phil. Trans. R. Soc. Lond. A359, 2005–2017.

    Article  ADS  Google Scholar 

  • Busemann, H., Baur, H., and Wider, R.: 2000, ‘Primordial Noble Gases in “Phase Q” in Carbonaceous and Ordinary Chondrites Studied by Closed-system Stepped Etching’, Met. Planet. Sci. 35, 949–973.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W.: 1995, ‘The First Ten Million Years in the Solar Nebula’, Meteoritics 30, 133–161.

    ADS  Google Scholar 

  • Chambers, J.E., and Wetherill, G.W.: 2001, ‘Planets in the Asteroid Belt’, Met. Planet. Sci. 36, 381–399.

    Article  ADS  Google Scholar 

  • Eugster, O., Eberhardt, P., and Geiss, J.: 1967a, ‘The Isotopic Composition of Krypton in Unequilibrated and Gas-rich Chondrites’, Earth Planet. Sci. Lett. 2, 385–393.

    Article  ADS  Google Scholar 

  • Eugster, O., Eberhardt, P., and Geiss, J.: 1967b, ‘Krypton and Xenon Isotopic Composition in Three Carbonaceous Chondrites’, Earth Planet. Sci. Lett. 3, 249–257.

    Article  ADS  Google Scholar 

  • Gross, S.H.: 1974, ‘The Atmospheres of Titan and the Galilean Satellites’, J. Atmos. Sci. 31, 1413–1420.

    Article  ADS  Google Scholar 

  • Holloway, J.R.: 1988a, ‘Planetary Atmospheres during Accretion: the Effect of C-O-H-S Equilibria’, Lunar Planet. Sci. XIX, 499–500.

    ADS  Google Scholar 

  • Holloway, J.R.: 1988b, ‘Distribution of H2O between Early Atmospheres and Magma Oceans’, EOS: Trans. Am. Geophys. Union 69, 338.

    Google Scholar 

  • Hunten, D.M.: 1979, ‘Capture of Phobos and Deimos by Protoatmospheric Drag’, Icarus 37, 113–123.

    Article  ADS  Google Scholar 

  • Hunten, D.M., Pepin, R.O., and Walker, J.C.G.: 1987, ‘Mass Fractionation in Hydrodynamic Escape’, Icarus 69, 532–549.

    Article  ADS  Google Scholar 

  • Huss, G.R., and Lewis, R.S.: 1994, ‘Noble Gases in Presolar Diamonds I: Three Distinct Components and their Implications for Diamond Origins’, Meteoritics 29, 791–810.

    ADS  Google Scholar 

  • Johnstone, D., Hollenbach, D., and Bally, J.: 1998, ‘Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula’, Astrophys. J. 499, 758–776.

    Article  ADS  Google Scholar 

  • Krummenacher, D., Merrihue, C.M., Pepin, R.O., and Reynolds, J.H.: 1962, ‘Meteoritic Kryptonand Barium Versus the General Isotopic Anomalies in Xenon’, Geochim. Cosmochim. Acta 26, 231–249.

    Article  ADS  Google Scholar 

  • Lewis, R.S., Amari, S., and Anders, E.: 1994, ‘Interstellar Grains in Meteorites: II. SiC and its Noble Gases’, Geochim. Cosmochim. Acta 58, 471–494.

    Article  ADS  Google Scholar 

  • Mahaffy, P.R., Niemann, H.B., Alpert, A., Atreya, S.K., Demick, J., Donahue, T.M., Harpold, D.N., and Owen, T.C.: 2000, ‘Noble Gas Abundance and Isotope Ratios in the Atmosphere of Jupiter from the Galileo Probe Mass Spectrometer’, J. Geophys. Res. 105, 15061–15071.

    Article  ADS  Google Scholar 

  • Marti, K.: 1967, ‘Isotopic Composition of Trapped Krypton and Xenon in Chondrites’, Earth Planet. Sci. Lett. 3, 243–248.

    Google Scholar 

  • Mazor, E., Heymann, D., and Anders, E.: 1970, ‘Noble Gases in Carbonaceous Chondrites’, Geochim. Cosmochim. Acta 34, 781–824.

    Article  ADS  Google Scholar 

  • Morfill, G.E., Tscharnuter, W., and Völk, H.J.: 1985, ‘Dynamical and Chemical Evolution of the Protoplanetary Nebula’, in D.C. Black and M.S. Matthews (eds.), Protostars and Planets II, University of Arizona Press, Tucson, pp. 493–533.

    Google Scholar 

  • Ott, U.: 2002, ‘Noble Gases in Meteorites — Trapped Components’, in D. Porcelli, C.J. Ballen-tine, and R. Wider (eds.), Noble Gases in Geochemistry and Cosmochemistry, Rev. Mineral. Geochem. 47, 71–100.

    Google Scholar 

  • Ott, U., and Begemann, F.: 2000, ‘Spallation Recoil and Age of Presolar Grains in Meteorites’, Met. Planet. Sci. 35, 53–63.

    Article  ADS  Google Scholar 

  • Owen, T., and Bar-Nun, A.: 1995, ‘Comets, Impacts and Atmospheres’, Icarus 116, 215–226.

    Article  ADS  Google Scholar 

  • Ozima, M., Wieler, R., Marty, B., and Podosek, F.A.: 1998, ‘Comparative Studies of Solar, Q-gases and Terrestrial Noble Gases, and Implications on the Evolution of the Solar Nebula’, Geochim. Cosmochim. Acta 62, 301–3124.

    Article  ADS  Google Scholar 

  • Palma, R.L., Becker, R.H., Pepin, R.O., and Schlutter, D.J.: 2002, ‘Irradiation Records in Regolith Materials, II: Solar-wind and Solar-energetic-particle Components in Helium, Neon, and Argon Extracted from Single Lunar Mineral Grains and From the Kapoeta Howardite by Stepwise Pulse-heating’, Geochim. Cosmochim. Acta 66, 2929–2958.

    Article  ADS  Google Scholar 

  • Pepin, R.O.: 1991, ‘On the Origin and Early Evolution of Terrestrial Planet Atmospheres and Meteoritic Volatiles’, Icarus 92, 2–79.

    Article  ADS  Google Scholar 

  • Pepin, R.O.: 1997, ‘Evolution of Earth’s Noble Gases: Consequences of Assuming Hydrodynamic Loss Driven by Giant Impact’, Icarus 126, 148–156.

    Article  ADS  Google Scholar 

  • Pepin, R.O.: 2000, ‘On the Isotopic Composition of Primordial Xenon in Terrestrial Planet Atmospheres’, Space Sci. Rev. 92, 371–395.

    Article  ADS  Google Scholar 

  • Pepin, R., and Porcelli, D.: 2002, ‘Origin of Noble Gases in the Terrestrial Planets’, in D. Porcelli, C.J. Ballentine, and R. Wider (eds.), Noble Gases in Geochemistry and Cosmochemistry, Rev. Mineral. Geochem. 47, 191–246.

    Google Scholar 

  • Pepin, R.O., Becker, R.H., and Rider, P.E.: 1995, ‘Xenon and Krypton Isotopes in Extraterrestrial Regolith Soils and in the Solar Wind’, Geochim. Cosmochim. Acta 59, 4997–5022.

    Article  ADS  Google Scholar 

  • Pepin, R.O., Becker, R.H., and Schlutter, D.J.: 1999, ‘Irradiation Records in Regolith Materials, I: Isotopic Compositions of Solar-wind Neon and Argon in Single Lunar Mineral Grains’, Geochim. Cosmochim. Acta 63, 2145–2162.

    Article  ADS  Google Scholar 

  • Tielens, A.G.G.M., and Allamandola, L.J.: 1987, ‘Evolution of Interstellar Dust’, in G.E. Morfill and M. Scholer (eds.), Physical Processes in Interstellar Clouds, D. Reidel, Dordrecht, pp. 333–376.

    Chapter  Google Scholar 

  • Wieler, R.: 1994, “‘Q-gases” as “Local” Primordial Noble Gas Component in Primitive Meteorites’, in J. Matsuda (ed.), Noble Gas Geochemistry and Cosmochemistry, Terra Scientific Publishing, Tokyo, pp. 31–41.

    Google Scholar 

  • Wieler, R., and Baur, H.: 1994, ‘Krypton and Xenon from the Solar Wind and Solar Energetic Particles in two Lunar Ilmenites of Different Antiquity’, Meteoritics 29, 570–580.

    ADS  Google Scholar 

  • Wieler, R., Anders, E., Baur, H., Lewis, R.S., and Signer, P.: 1992, ‘Characterization of Q-gases and Other Noble Gas Components in the Murchison Meteorite’, Geochim. Cosmochim. Acta 56, 2907–2921.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pepin, R.O. (2003). On Noble Gas Processing in the Solar Accretion Disk. In: Kallenbach, R., Encrenaz, T., Geiss, J., Mauersberger, K., Owen, T.C., Robert, F. (eds) Solar System History from Isotopic Signatures of Volatile Elements. Space Sciences Series of ISSI, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0145-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0145-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3970-3

  • Online ISBN: 978-94-010-0145-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics