Skip to main content

Calcium Complexities: New Fluorescence Techniques for Probing Mitochondria and Other Subcellular Compartments

  • Chapter
Calcium: The Molecular Basis of Calcium Action in Biology and Medicine

Abstract

As evident in all of the chapters throughout this book, Ca2+ is an essential regulator of various cellular functions, including muscle contraction and the release of neurotransmitters and hormones. However, the question can be asked: How can a ubiquitous signal like Ca2+ generate so many different physiological responses while maintaining selectivity as a cellular signal? (Berridge, 1997b). Since the advent of Ca2+-sensitive fluorophores and fluorescence microscopy, researchers have been able to visualize Ca2+ signaling in living cells. These studies have revealed complexities in temporal and spatial regulation of Ca2+ signaling, which appear to hold the key to how Ca2+ can act as both a ubiquitous and selective signal (Berridge, 1997b). Furthermore, confocal and electron microscopy studies have shown that the locality of key Ca2+ transporters and the concentration of Ca2+ in sub-cellular compartments is not homogenous, with consequent physiological implications. In this chapter we will discuss the spatial and temporal complexities of Ca2+ signaling, in particular recent studies using confocal, multi-photon and high-speed fluorescence microscopy as well as “caged” regulators of intracellular Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babcock, D.F., Herrington, J., Goodwin, P.C., Park, Y.B. and Hille, B., 1997, Mitochondrial participation in the intracellular Ca2+ network, J. Cell. Biol. 136, 833–844.

    Article  PubMed  CAS  Google Scholar 

  • Baron, K. and Thayer, S., 1997, CGP37157 modulates mitochondrial Ca2+ homeostasis in cultured rat dorsal root ganglion neurons, Eur. J. Pharmacol. 340, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, P., Colonna, R., Costantini, P., Eriksson, O., Fontaine, E., Ichas, F., Massari, S., Nicolli, A., Petronilli, V. and Scorrano, L., 1998. The mitochondrial permeability transition, Biofactors 8, 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, P., Scorrano, L., Colonna, R., Petronilli, V. and Di Lisa, F., 1999. Mitochondria and cell death — Mechanistic aspects and methodological issues, Eur. J. Biochem. 264, 687–701.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M., 1997a, Elementary and global aspects of calcium signalling, J. Physiol (Lond.) 499, 291–306.

    CAS  Google Scholar 

  • Berridge, M.J., 1997b, The AM and FM of calcium signalling, Nature 386, 759–760.

    Article  PubMed  CAS  Google Scholar 

  • Bootman, M., Niggli, E., Berridge, M. and Lipp, P., 1997, Imaging the hierarchical Ca2+ signalling system in HeLa cells, J. Physiol. (Lond). 499, 307–314.

    CAS  Google Scholar 

  • Bowser, D.N., Minamikawa, T., Nagley, P. and Williams, D.A., 1998, Role of mitochondria in calcium regulation of spontaneously contracting cardiac muscle cells, Biophys. J. 75, 2004–2014.

    Article  PubMed  CAS  Google Scholar 

  • Bruton, J., Katz, A. and Westerblad, H., 1999, Insulin increases near-membrane but not global Ca2+ in isolated skeletal muscle, Proc. Natl. Acad. Sei. USA 96, 3281–3286.

    Article  CAS  Google Scholar 

  • Budd, S., 1998, Mechanisms of neuronal damage in brain hypoxia/ischemia: Focus on the role of mitochondrial calcium accumulation, Pharm. Ther. 80, 203–229.

    Article  CAS  Google Scholar 

  • Budd, S.L. and Nicholls, D.G., 1996a, Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurochem. 67, 2282–2291.

    Article  PubMed  CAS  Google Scholar 

  • Budd, S.L. and Nicholls, D.G., 1996b, A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis, J. Neurochem. 66, 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Callamaras, N., Sun, X.P., Ivorra, I. and Parker, I., 1998, Hemispheric asymmetry of macroscopic and elementary calcium signals mediated by InsP3 in Xenopus oocytes, Physiol. (Lond). 511,395–405.

    Article  CAS  Google Scholar 

  • Cannell, M. and Soeller, C., 1999, Mechanisms underlying calcium sparks in cardiac muscle, J. Gen. Physiol. 113, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli, E., 1987. Intracellular calcium homeostasis, Annu. Rev. Biochem. 56, 395–433.

    Article  PubMed  CAS  Google Scholar 

  • Caterina, M., Schumacher, M., Tominaga, M., Rosen, T., Levine, J. and Julius, D., 1997, The capsaicin receptor: A heat-activated ion channel in the pain pathway, Nature 389,816–824.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Cannel, M. and Van Breeman, C., 1992, The superficial buffer barier in vascular smooth muscle, Can. J. Physiol. Pharmacol. 70, 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H., Lederer, W. and Cannel, M., 1993, Calcium sparks: Elementary events underlying excitation-contraction coupling in heart muscle, Science 262, 740–744.

    Article  PubMed  CAS  Google Scholar 

  • Csordas, G., Thomas, A.P. and Hajnoczky, G., 1999, Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria, EMBO J. 18, 96–108.

    Article  PubMed  CAS  Google Scholar 

  • David, G., 1999, Mitochondrial clearance of cytosolic Ca2+ in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca2+], J. Neurosci. 19, 7495–7506.

    PubMed  CAS  Google Scholar 

  • David, G., Barrett, J. and Barret, E., 1998, Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals, J. Physiol (Lond.) 509, 59–65.

    Article  CAS  Google Scholar 

  • Davies, E. and Hallet, M., 1998, High micromolar Ca2+ beneath the plasma membrane in stimulated neutrophils, Biochem. Biophys. Res. Comm. 248,679–683.

    Article  PubMed  CAS  Google Scholar 

  • Dedov, V.N. and Roufogalis, B.D., 1998, Rat dorsal root ganglion neurones express different capsaicin-evoked Ca2+ transients and permeabilities to Mn2+, Neurosci. Lett. 248, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Dedov, V.N. and Roufogalis, B.D., 1999, Mitochondrial Ca2+ accumulation in DRG neurones following activation of capcaicin receptors in DRG neurones, Neuroscience 95, 183–188.

    Article  Google Scholar 

  • Devine, C.E., Somlyo, A.V. and Somlyo, A.P., 1972, Sarcoplasmic reticulum and excitation-contration coupling in mammalian smooth muscle, J. Cell. Biol. 52, 690–718.

    Article  PubMed  CAS  Google Scholar 

  • Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C. and Healy, J.I., 1997, Differential activation of transcription factors induced by Ca2+ response amplitude and duration, Nature 386, 855–858.

    Article  PubMed  CAS  Google Scholar 

  • Duchen, M.R., 1992, Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons, Biochem. J. 283, 41–50.

    PubMed  CAS  Google Scholar 

  • Duchen, M.R., 1999, Contributions of mitochondria to animal physiology: From homeostatic sensor to calcium signalling and cell death, J. Physiol, (bond.) 516, 1–17.

    Article  CAS  Google Scholar 

  • Farinas, J. and Verkman, A., 1999, Receptor-mediated targeting of fluorescent probes in living cells, J. Biol. Chem. 274, 7603–7606.

    Article  PubMed  CAS  Google Scholar 

  • Fay, F.S., 1995, Calcium sparks in vascular smooth muscle: Relaxation regulators, Science 270, 588–589.

    Article  PubMed  CAS  Google Scholar 

  • Friel, D.D. and Tsien, R.W., 1994, An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i, J. Neurosci. 14, 4007–4024.

    PubMed  CAS  Google Scholar 

  • Fujimoto, T., 1993, Calcium pump of the plasma membrane is localized in caveolae, J. Cell Biol 120, 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  • Ganitkevich, V.A. and Isenberg, G., 1996, Dissociation of subsarcolemmal from global cytosolic [Ca2+] in myocytes from guinea-pig coronary artery, J. Physiol. (Lond.) 490(2), 305–318.

    CAS  Google Scholar 

  • Gerasimenko, O.V, Gerasimenko, J.V., Tepikin, A.V. and Petersen, O.H., 1996, Calcium transport pathways in the nucleus, Pflügers Arch. 432, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Golovina, V.A. and Blaustein, M.P., 1997, Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum, Science 275, 1643–1648.

    Article  PubMed  CAS  Google Scholar 

  • Gunter, T.E. and Pfeiffer, D.R., 1990, Mechanisms by which mitochondria transport calcium, Am. J. Physiol 258, C755–C786.

    PubMed  CAS  Google Scholar 

  • Gunter, T., Buntinas, L., Sparagna, G. and Gunter, K., 1998, The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients, Biochim. Biophys. Acta 1366, 5–15.

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky, G., Hager, R. and Thomas, A.P., 1999, Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca2+, J. Biol Chem. 274, 14157–14162.

    Article  PubMed  CAS  Google Scholar 

  • Hansford, G.R., 1985, Regulation between mitochondrial calcium transport and control of energy metabolism, Rev. Physiol. Biochem. Pharmacol 102, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi, T., Kume, K., Hirose, K., Yokomizo, T., Lino, M., Itoh, H. and Shimizu, T., 1999, Critical duration of intracellular Ca2+ response required for continuous translocation and activation of cytosolic phospholipase A2, J. Biol Chem. 274, 5163–5169.

    Article  PubMed  CAS  Google Scholar 

  • Hyrc, K., Handran, S.D., Rothman, S.M. and Goldberg, M.P., 1997, Ionized intracellular calcium concentration predicts excitotoxic neuronal death: Observations with low-affinity fluorescent calcium indicators, J. Neurosci. 17, 6669–6677.

    PubMed  CAS  Google Scholar 

  • Ichas, F. and Mazat, J.-P., 1998, From calcium signaling to cell death: Two confomations for the mitochondrial permeability transition pore. Swiching from low-to high-conductance state, Biochim. Biophys. Acta 1366, 33–50.

    Article  PubMed  CAS  Google Scholar 

  • Ichas, F., Jouaville, L.S. and Mazat, J.P., 1997, Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals, Cell 89, 1145–1153.

    Article  PubMed  CAS  Google Scholar 

  • Isshiki, M., Ando, J., Korenaga, R., Kogo, H., Fujimoto, T., Fujita, T. and Kamiya, A., 1998, Endothelial Ca2+ waves prefentially originate at specific loci in caveolin-rich cell edges, Proc. Natl Acad. Sei. USA 95, 5009–5014.

    Article  CAS  Google Scholar 

  • Jou, M.J., Peng, T.I. and Sheu, S.S., 1996, Histamine induces oscillations of mitochondrial free Ca2+ concentration in single cultured rat brain astrocytes, J. Physiol. (Lond.) 497, 299–308.

    CAS  Google Scholar 

  • Kifor, O., Diaz, R., Butters, R., Kifor, I. and Brown, E., 1998, The calcium-sensing receptor is localized in caveolin-rich plasma membrane domains of bovine parathyroid cells, J. Biol. Chem. 273, 21708–21713.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi, S., Bootman, M.D., Bobanov, L.K., Schell, M.J., Berridge, M.J. and Lipp, P., 1999, Characterization of elementary Ca2+ release signals in NGF-differentiated PC 12 cells and hippocampal neurons, Neuron 22, 125–137.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., Dallaporta, B. and Resche-Rigon, M., 1998, The mitochondrial death/life regulator in apoptosis and necrosis, Annu. Rev. Physiol. 60, 619–642.

    Article  PubMed  CAS  Google Scholar 

  • Lawrie, A.M., Rizzuto, R., Pozzan, T. and Simpson, A.W., 1996, A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells, J. Biol. Chem. 271, 10753–10752.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.G., Xu, X., Zeng, W., Diaz, W., Kuo, T.H., Wuytack, F., Racymaekers, L. and Muallem, S., 1997, Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells, J. Biol. Chem. 272, 15771–15776.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H., Llopis, J., Whitney, M., Zlokarnik, G. and Tsien, R.Y., 1998, Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression, Nature 392, 936–941.

    Article  PubMed  CAS  Google Scholar 

  • Lipp, P. and Niggli, E., 1998, Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes, J. Physiol. (Lond.) 508(3), 801–809.

    Article  CAS  Google Scholar 

  • Marchant, J., Callamaras, N. and Parker, I., 1999, Initiation of IP3-mediated Ca2+ waves in Xenopus oocytes, EMBO J. 18, 5285–5299.

    Article  PubMed  CAS  Google Scholar 

  • Marsault, R., Murgia, M., Pozzan, T. and Rizzuto, R., 1997, Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells, EMBO J. 16, 1575–1581.

    Article  PubMed  CAS  Google Scholar 

  • Mineo, C., Ying, Y.-S., Chapline, C., Jaken, S. and Anderson, R.G.W., 1998, Targeting of protein kinase Calpha to caveolae, Cell. Biol. 141, 601–610.

    Article  CAS  Google Scholar 

  • Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M. and Tsien, R.Y., 1997, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388, 882–887.

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki, A., Griesbeck, O., Heim, R. and Tsien, R.Y., 1999, Dynamic and quantitative Ca2+ measurements using improved cameleons, Proc. Natl. Acad. Sci. USA 96, 2135–2140.

    Article  PubMed  CAS  Google Scholar 

  • Monteith, G.R. and Blaustein, M.P., 1999, Heterogeneity of mitochondrial matrix free Ca2+: Resolution of Ca2+ dynamics in individual mitochondria in situ, Am. J. Physiol. 276, C1193–C1204.

    PubMed  CAS  Google Scholar 

  • Monteith, G.R. and Roufogalis, B.D., 1995. The plasma membrane calcium pump — A physiological perspective on its regulation, Cell Calcium 18, 459–470.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M.T., Cheng, H., Robart, M., Santana, L., Bonev, A., Knot, H. and Lederer, W., 1995, Relaxation of arterial smooth muscle by calcium sparks, Science 270, 633–637.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, D.G. and Budd, S.L., 1998, Neuronal excitotoxicity: The role of mitochondria, Biofactors 8, 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Niggli, E., 1999, Localized intracellular calcium signaling in muscle: Calcium sparks and calcium quarks, Annu. Rev. Physiol. 61, 311–335.

    Article  PubMed  CAS  Google Scholar 

  • Nowicky, A.V. and Duchen, M.R., 1998, Changes in [Ca2+]i; and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons, j. Physiol 507, 131–145.

    Article  PubMed  CAS  Google Scholar 

  • Peng, T.I. and Greenamyre, J.T., 1998. Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors, Mol Pharmacol 53, 974–980.

    PubMed  CAS  Google Scholar 

  • Peng, T.I., Jou, M.J., Sheu, S.S. and Greenamyre, J.T., 1998, Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons, Exp. Neurol 149, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Peng, Y.Y., 1998, Effects of mitochondrion on calcium transients at intact presynaptic terminals depend on frequency of nerve firing, J. Neurophysiol 80, 186–195.

    PubMed  CAS  Google Scholar 

  • Pike, L.J. and Casey, L., 1996, Localization and turnover of phoshatidylinositol 4,5 bisphophate in caveolin-enriched membrane domains, Biol Chem. 271, 26453–26456.

    Article  CAS  Google Scholar 

  • Pinton, P., Pozzan, T. and Rizzuto, R., 1998, The Golgi apparatus is an inositiol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum, EMBO J. 17, 5298–5308.

    Article  PubMed  CAS  Google Scholar 

  • Pivovarova, N.B., Hongpaisan, J., Andrews, S.B. and Friel, D.D., 1999, Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: Spatial and temporal characteristics, J. Neurosci. 19, 6372–6384.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., 1989, The cycling of calcium as an intracellular messenger, Scientific American 10, 44–55.

    Google Scholar 

  • Ricken, S., Leipziger, J., Greger, R. and Nitschke, R., 1998, Simultaneous measurements of cytosolic and mitochondrial Ca2+ transients in HT29 cells, J. Biol Chem. 273, 34961–34969.

    Article  PubMed  CAS  Google Scholar 

  • Rizzo, V., Mcintosh, D.P., Oh, P. and Schnitzer, J.E., 1998, In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association, J. Biol. Chem. 273, 34724–34729.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto, R., Brini, M., Murgia, M. and Pozzan, T., 1993, Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighbouring mitochondria, Science 262, 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto, R., Pinton, P., Carrington, W., Fay, F., Fogarty, K., Lifshitz, L., Tuft, R. and Pozzan, T., 1998, Close contacts with the endoplsmic reticulum as determinants of mitochondrial Ca2+ responses, Science 280, 1763–1766.

    Article  PubMed  CAS  Google Scholar 

  • Rogue, P.J. and Malviya, A.N., 1999, Calcium signals in the cell nucleus, EMBO J. 18, 5147–5152.

    Article  PubMed  CAS  Google Scholar 

  • Schinder, A.F., Olson, E.C., Spitzer, N.C. and Montai, M., 1996, Mitochondrial dysfunction is a primary event in glutamate neurotoxicity, J. Neurosci. 16, 6125–6133.

    PubMed  CAS  Google Scholar 

  • Schneider, M.F., 1999, Ca2+ sparks in frog skeletal muscle: Generation by one, some or many SR Ca2+ release channels, Gen. Physiol. 113, 365–371.

    Article  CAS  Google Scholar 

  • Schnitzer, J.E., Oh, P., Jacobson, B.S. and Dvorak, A.M., 1995, Caveolae from luminal plasmalemma of rat lung endothelium: Microdomains enriched in caveolin, Ca2+-ATPase, and inositol trisphosphate receptor, Proc. Natl. Acad. Sei. USA 92, 1759–1763.

    Article  CAS  Google Scholar 

  • Scotti, A., Chatton, J. and Reuter, H., 1999, Roles of Na(+)-Ca2+ exchange and of mitochondria in the regulation of presynaptic Ca2+ and spontaneous glutamate release, Philos. Trans. Roy. Soc. London, B 354, 357–364.

    Article  CAS  Google Scholar 

  • Segal, M., 1995, Imaging of calcium variations in living dendritic spines of cultured rat hippocampal neurons, Physiol (Lond.) 486, 283–295.

    CAS  Google Scholar 

  • Simpson, P.B. and Russell, J.T., 1996, Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes, Biol. Chem. 271, 33493–33501.

    Article  CAS  Google Scholar 

  • Simpson, P.B. and Russell, J.T., 1997, Role of sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia, Biochem. J. 325, 239–247.

    PubMed  CAS  Google Scholar 

  • Stout, A. and Reynolds, I., 1999, High-affinity calcium indicators underestimate increases in intracellular calcium concentrations associated with excitotoxic glutamate stimulations, Neuroscience 89, 91–100.

    Article  PubMed  CAS  Google Scholar 

  • Stout, A.K., Raphael, H.M., Kanterewicz, B.I., Klann, E. and Reynolds, I.J., 1998, Glutamate-induced neuron death requires mitochondrial calcium uptake, Nature Neurosci. 1, 366–373.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X.-P., Callamaras, N., Marchant, J.S. and Parker, I., 1998, A continuum of IP3 mediated elementary signalling events in Xenopus oocytes, J. Physiol. (Lond.) 509(1), 67–80.

    Article  CAS  Google Scholar 

  • Thayer, S.A. and Miller, R.J., 1990, Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro, J. Physiol. (Lond.) 425, 85–115.

    CAS  Google Scholar 

  • Thomas, D., Lipp, P., Berridge, M.J. and Bootman, M.D., 1998, Hormone-evoked elementary Ca2+ signals are not stereotypic, but reflect activation of different size clusters and variable recruitment of channels within a cluster, J. Biol. Chem. 273, 27130–27136.

    Article  PubMed  CAS  Google Scholar 

  • Tinel, H., Cancela, J.M., Mogami, H., Gerasimenko, J.V., Gerasimenko, O.V., Tepikin, A.V. and Petersen, O.H., 1999, Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals, EMBO J. 18, 4999–5008.

    Article  PubMed  CAS  Google Scholar 

  • Wartenberg, M., Diedershagen, H., Hescheler, J. and Sauer, H., 1999, Growth stimulation versus induction of cell quiescence by hydrogen peroxide in prostate tumor spheroids is encoded by the duration of the Ca2+ response, J. Biol. Chem. 274, 27759–27767.

    Article  PubMed  CAS  Google Scholar 

  • White, R.J. and Reynolds, I.J., 1996, Mitochondrial depolarization in glutamate-stimulated neurons: An early signal specific to excitotoxin exposure, J. Neurosci. 16, 5688–5697.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Monteith, G.R., Dedov, V.N., Roufogalis, B.D. (2000). Calcium Complexities: New Fluorescence Techniques for Probing Mitochondria and Other Subcellular Compartments. In: Pochet, R., Donato, R., Haiech, J., Heizmann, C., Gerke, V. (eds) Calcium: The Molecular Basis of Calcium Action in Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0688-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0688-0_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6422-1

  • Online ISBN: 978-94-010-0688-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics