Skip to main content

Abstract

Communication is the governing word of our epoch, growth of networks such as the internet or mobile phone are tangible proof of our need to communicate. These human developments follow the normal evolution of life. Indeed, the first life forms were single cells that did not communicate with each other. During evolution, prokaryotic cells, and later eukaryotes, began to associate into multicellular colonies. The key advantages of this “multicellularity” are intercellular cooperation and cellular specialization. Communication between cells is a fundamental requirement for the social behavior of cells, facilitating cooperation between cells of the same specialized group (tissue or organ) and between different cell groups, thereby ensuring the coordination of complex and intricate functions. Cells communicate with each other by several non-exclusive pathways, which may be direct or indirect. Direct communication involves intercellular junctions (known as gap junctions), connecting the cytosols of the adjacent cells and facilitating the transfer of low-molecular weight molecules. Thus, the molecules that act as intracellular messengers (cAMP, InsP3, Ca2+) may also act on other cells, by passing from one cell to another via the gap junctions. Indirect communication involves the emission by certain cells of a biological messenger into the extracellular environment. Embryogenesis, tissue ontogeny, cell growth and regeneration and the coordination of many tissue and cell functions could not occur in the absence of direct or indirect communication between cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allbritton, N.L., Meyer, T. and Stryer, L., 1992, Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate, Science 258, 1812–1815.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J., 1995, Calcium signalling and cell proliferation, Bioessays 17, 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J., 1997, Elementary and global aspects of calcium signalling, J. Physiol. 499, 291–306.

    PubMed  CAS  Google Scholar 

  • Bertuzzi, F., Zacchetti, D., Berra, C., Socci, C., Pozza, G., Pontiroli, A.E. and Grohovaz, F., 1996, Intercellular Ca2+ waves sustain coordinate insulin secretion in pig islets of Langerhans, FEBS Lett. 379, 21–25.

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone, R., White, T.W. and Paul, D.L., 1996, Connections with connexins: The molecular basis of direct intercellular signaling, Eur. J. Biochem. 238, 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Carter, T.D., Chen, X.Y., Carlile, G., Kalapothakis, E., Ogden, D. and Evans, W H., 1996, Porcine aortic endothelial gap junctions: Identification and permeation by caged InsP3, J. Cell Sci. 109, 1765–1773.

    PubMed  CAS  Google Scholar 

  • Charles, A.C., Naus, C.C., Zhu, D., Kidder, G.M., Dirksen, E.R. and Sanderson, M.J., 1992, Intercellular calcium signaling via gap junctions in glioma cells, J. Cell Biol. 118, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Charles, A., 1998, Intercellular calcium waves in glia, Glia 24, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, G. and Louis, C., 1998, Roles of Ca2+, inositol trisphosphate and cyclic ADP-ribose in mediating intercellular Ca2+ signaling in sheep lens cells, J. Cell Sci. 111, 1217–1225.

    PubMed  CAS  Google Scholar 

  • Combettes, L., Tran, D., Tordjmann, T., Laurent, M., Berthon, B. and Claret, M., 1994, Ca2+— mobilizing hormones induce sequentially ordered Ca2+ signals in multicellular systems of rat hepatocytes, Biochem. J. 304, 585–594.

    PubMed  CAS  Google Scholar 

  • Dani, J.W., Chernjavsky, A. and Smith, S.J., 1992, Neuronal activity triggers calcium waves in hippocampal astrocyte networks, Neuron 8, 429–440.

    Article  PubMed  CAS  Google Scholar 

  • Domenighetti, A.A., Beny, J.L., Chabaud, F. and Frieden, M., 1998, An intercellular regenerative calcium wave in porcine coronary artery endothelial cells in primary culture, J. Physiol. (Lond.) 513, 103–116.

    Article  CAS  Google Scholar 

  • Dupont, G., Tordjmann, T., Clair, C., Swillens, S., Claret, M. and Combettes, L., 2000, Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes, FASEB J. 14, 279–289.

    PubMed  CAS  Google Scholar 

  • Enkvist, M.O.K., and McCarthy, K.D., 1992, Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves, J. Neurochem. 59, 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto, K., Furuya, K., Yamagishi, S., Oka, T. and Maeno, T., 1994, The increase in the intracellular Ca2+ concentration induced by mechanical stimulation is propagated via release of pyrophosphorylated nucleotides in mammary epithelial cells, Pflügers Arch. 427, 533–542.

    Article  PubMed  CAS  Google Scholar 

  • Giaume, C. and Venance, L., 1998, Intercellular calcium signaling and gap junctional communication in astrocytes, Glia 24, 50–64.

    Article  PubMed  CAS  Google Scholar 

  • Gilland, E., Miller, A.L., Karplus, E., Baker, R. and Webb, S.E., 1999, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Hardingham, G.E. and Bading, H., 1999, Calcium as a versatile second messenger in the control of gene expression, Microsc. Res. Tech. 46, 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Hempel, C.M., Vincent, P., Adams, S.R., Tsien, R.Y. and Seiverston, A.I., 1996, Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuit, Nature 384, 166–169.

    Article  PubMed  CAS  Google Scholar 

  • Himmel, H.M., Whorton, A.R. and Strauss, H.C., 1993, Intracellular calcium, currents, and stimulus-response coupling in endothelial cells, Hypertension 21, 112–127.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, K., Nathanson, M.H. and Sears, M.L., 1998, Novel paracrine signaling mechanism in the ocular ciliary epithelium, Proc. Natl Acad. Sci. USA 95, 8381–8386.

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist, S.M., Sharp, P., Johnson, I., Satoh, Y. and Williams, M., 1998, Acetylcholine-induced calcium signaling along the rat colonic crypt axis, Gastroenterology 115, 1131–1143.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, W.R., 1985, Regulation of cell-to-cell communication by phosphorylation, Biochem. Soc. Symp. 50, 43–58.

    PubMed  CAS  Google Scholar 

  • Miyazaki, S., 1995, Inositol trisphosphate receptor-mediated spatiotemporal calcium signalling, Curr. Opin. Cell Biol. 7, 190–196.

    Article  PubMed  CAS  Google Scholar 

  • Moitoso De Vargas, L., Sobolewski, J., Siegel, R. and Moss, G.L., 1997, Individual β cells within the intact islet differentially respond to glucose, J. Biol. Chem. 272, 26573–26577.

    Article  Google Scholar 

  • Motoyama, K., Karl, I.E., Flye, M.W., Osborne, D.F. and Hotchkiss, R.S., 1999, Effect of Ca2+ agonists in the perfused liver: Determination via laser scanning confocal microscopy, Am. J. Physiol. 276, R575–R585.

    PubMed  CAS  Google Scholar 

  • Nathanson, M.H. and Burgstahler, A.D., 1992, Coordination of hormone-induced calcium signals in isolated rat hepatocyte couplets — Demonstration with confocal microscopy, Mol. Biol. Cell. 3, 113–121.

    PubMed  CAS  Google Scholar 

  • Nathanson, M.H., Burgstahler, A.D., Mennone, A., Fallon, M.B., Gonzalez, C.B. and Saez, J.C., 1995, Ca2+ waves are organized among hepatocytes in the intact organ, Am. J. Physiol. 32, G167–G171.

    Google Scholar 

  • Nelles, E., Butzler, C., Jung, D., Temme, A., Gabriel, H.D., Dahl, U., Traub, O., Stumpel, F., Jungermann, K., Zielasek, J., Toyka, K.V., Dermietzel, R. and Willecke, K., 1996, Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice, Proc. Natl. Acad. Sci. USA 93, 9565–9570.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A. and Zahs, K.R., 1997, Calcium waves in retinal glial cells, Science 275, 844–847.

    Article  PubMed  CAS  Google Scholar 

  • Osipchuk, Y. and Cahalan, M., 1992, Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells, Nature 359, 241–244.

    Article  PubMed  CAS  Google Scholar 

  • Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S. and Haydon, P.G., 1994, Glutamate-mediated astrocyte-neuron signalling, Nature 369, 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Robb-Gaspers, L.D. and Thomas, A.P., 1995, Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver, J. Biol. Chem. 270, 8102–8107.

    Article  PubMed  CAS  Google Scholar 

  • Saez, J.C., Connor, J.A., Spray, D.C. and Bennett, M.V.L., 1989, Hepatocyte gap junctions are permeable to the 2nd messenger, inositol 1,4,5-trisphosphate, and to calcium ions, Proc. Natl. Acad. Sci. USA 86, 2708–2712.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, M.J., 1995, Intercellular calcium waves mediated by inositol trisphosphate, Ciba Found Symp. 188, 175–189.

    PubMed  CAS  Google Scholar 

  • Sanderson, M.J., Charles, A.C. and Dirksen, E.R., 1990, Mechanical stimulation and inter-cellular communication increases intracellular Ca2+ in epithelial cells, Cell. Regul 1, 585–596.

    PubMed  CAS  Google Scholar 

  • Sanderson, M.J., Charles, A.C., Boitano, S. and Dirksen, E.R., 1994, Mechanisms and functions of intercellular calcium signaling, Mol. Cell. Endocrinol. 98, 173–187.

    Article  PubMed  CAS  Google Scholar 

  • Schlosser, S.F., Burgstahler, A.D. and Nathanson, M.H., 1996, Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides, Proc. Natl Acad. Sci. USA 93, 9948–9953.

    Article  PubMed  CAS  Google Scholar 

  • Sneyd, J., Wilkins, M., Strahonja, A. and Sanderson, M.J., 1998, Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-trisphosphate, Biophys. Chem. 72, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Stauffer, P.L., Zhao, H., Luby-Phelps, K., Moss, R.L., Star, R.A. and Muallem, S., 1993, Gap junction communication modulates [Ca2+]i oscillations and enzyme secretion in pancreatic acini, J. Biol. Chem. 15, 268, 19769–19775.

    Google Scholar 

  • Steinberg, T.H., Civitelli, R., Beyer, E.C., Jorgensen, N.R., Cao, D., Geist, ST. and Lin, G., 1998, Multiple mechanisms for intercellular calcium waves, in Gap Junctions, R. Werner (ed.), IOS Press, pp. 271–275.

    Google Scholar 

  • Taylor, C.W., 1998, Inositol trisphosphate receptors: Ca2+ modulated intracellular Ca2+ channels, Biochim. Biophys. Acta 1436, 19–33.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, A.P., Bird, G.S.J., Hajnoczky, G., Robb-Gaspers, L.D. and Putney, J.W., 1996, Spatial and temporal aspects of cellular calcium signalling, FASEB J. 10, 1505–1517.

    PubMed  CAS  Google Scholar 

  • Tordjmann, T., Berthon, B., Claret, M. and Combettes, L., 1997, Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: Dual control by gap junction permeability and agonist, EMBO J. 16, 5398–5407.

    Article  PubMed  CAS  Google Scholar 

  • Tordjmann, T., Berthon, B., Jacquemin, E., Clair, C., Stelly, N., Guillon, G., Claret, M. and Combettes, L., 1998, Receptor-oriented intercellular calcium waves evoked by vasopressin in rat hepatocytes, EMBO J. 17, 4695–4703.

    Article  PubMed  CAS  Google Scholar 

  • Toyofuku, T., Yabuki, M., Otsu, K., Kuzuya, T., Hori, M. and Tada, M., 1998, Intercellular calcium signaling via gap junction in connexin-43-transfected cells, J. Biol. Chem. 273, 1519–1528.

    Article  PubMed  CAS  Google Scholar 

  • Woods, N.M., Cuthbertson, K.S. and Cobbold, P.H., 1986. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 329, 719–721.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tordjmann, T., Clair, C., Claret, M., Combettes, L. (2000). Intercellular Calcium Signaling in “Non-Excitable” Cells. In: Pochet, R., Donato, R., Haiech, J., Heizmann, C., Gerke, V. (eds) Calcium: The Molecular Basis of Calcium Action in Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0688-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0688-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6422-1

  • Online ISBN: 978-94-010-0688-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics