Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 563))

  • 905 Accesses

Abstract

At optical frequencies the dielectric response of metals is dominated by the plasma like behaviour of the electron gas:

$$ \varepsilon \left( \omega \right) = 1 - \frac{{\omega _p^2}}{{\omega \left( {\omega + i\gamma } \right)}}.$$

There is a characteristic plasma frequency which is the natural frequency of oscillation of the electron gas

$$ \omega _p^2 = \frac{{n{e^2}}}{{{\varepsilon _0}{m_e}}}.$$

Dissipation is introduced through the damping factor, γ, which in turn can be related to the conductivity of the metal if we assume that the same form persists to low frequencies,

$$ \gamma = {\sigma ^{ - 1}}{\varepsilon _0}.$$

It is customary to ignore the dependence of ε on wave vector, q, and this is a good approximation for many purposes. However in some circumstances, for example where we consider the response of nanostructures to light, we may have to worry about the short wavelength, large q behaviour of ε. One obvious cut-off length is the separation between electrons in the metal. Another might be the inelastic scattering length for electrons which is typically a few nanometres. The very short wavelength response of metals at optical frequencies has been studied in the electron microscope where losses at large momentum transfers can be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Ritchie, Phys. Rev., 106, 874 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  2. J.B. Pendry, J. Phys. [Condensed Matter] 8 1085–1108 (1996); A.J. Ward and J.B. Pendry Phys. Rev. B58, 7252-9 (1998); A.J. Ward and J.B. Pendry, Comp. Physics Comm. 112, 23 (1998); J.B. Pendry and P.M. Bell: ‘Transfer Matrix Techniques for Electromagnetic Waves’ in Photonic Band Gap Materials NATO ASI series ed. C.M. Soukoulis (Kluwer, Dordrecht, 1996)

    Google Scholar 

  3. F.J. Garcia Vidal and J.B. Pendry, Phys. Rev. Lett. 77, 1163 (1996).

    Article  ADS  Google Scholar 

  4. F.J. Garcia Vidal, J.M. Pitarke, and J.B. Pendry, Phys. Rev. B58, 6783 (1998).

    ADS  Google Scholar 

  5. J.A. Porto, F.J. Garcia Vidal, and J.B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).

    Article  ADS  Google Scholar 

  6. T. W. Ebbesen et ai., Nature (London) 391, 667 (1998).

    Google Scholar 

  7. D.F. Sievenpiper M.E. Sickmiller, and E. Yablonovitch, Phys. Rev. Lett., 76, 2480 (1996); J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996); J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, J. Phys. [Condensed Matter] 10, 4785 (1998).

    Article  ADS  Google Scholar 

  8. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Transactions on Microwave Theory and Techniques 47, 2075 (1999).

    Article  ADS  Google Scholar 

  9. D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  ADS  Google Scholar 

  10. V.G. Veselago, Soviet Physics USPEKHI 10, 509 (1968).

    Article  ADS  Google Scholar 

  11. J.B. Pendry, submitted to Phys. Rev. Lett. (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pendry, J.B. (2001). Intense Focusing of Light Using Metals. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics