Skip to main content

Evaluation of Temporal and Spatial Factors that Control the Susceptibility to Rainfall-Triggered Landslides

  • Chapter
Coping With Flash Floods

Part of the book series: NATO Science Series ((ASEN2,volume 77))

Abstract

Landslides are a common, natural mass-wasting phenomenon in mountainous areas throughout the world. The term landslide means the downward and outward movement of hillslope-forming materials--natural rock, soils, artificial fills or combinations of these materials [37]. Landslides can include falls, topples, slides, spreads, and flows [9]. Shallow landslides usually occur in material defined as engineering soils: unconsolidated, inorganic mineral, residual, or transported material (colluvium or alluvium), including rock fragments. Landslides are part of the natural process of hillslope erosion that is responsible for the introduction of sediment into streams, rivers, lakes, reservoirs, and finally the ocean. In populated areas landslides pose serious problems for public safety. Human-made structures and their inhabitants on or near hillslopes may be in jeopardy if geologic, hydrologic, and climatologic conditions are conducive to landsliding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernknopf, R.L., Campbell, R.H., Brookshire, D.S., and Shapiro, C.D. (1988) A probabilistic approach to landslide hazard mapping in Cincinnati, Ohio, with applications for economic evaluationBulletin of the Association of Engineering Geologists25 39–56.

    Google Scholar 

  2. Brabb, E.E., Pampeyan, E.H., and Bonilla, M.G. (1972) Landslide susceptibility in San Mateo County, CaliforniaU.S. Geological Survey4 p.

    Google Scholar 

  3. Brunori, F., Casagli, N., Fiaschi, S., Garzonio, C.A., and Moretti, S. (1996) Landslide hazard mapping in Tuscany, Italy: an example of automatic evaluationinSlaymaker, Olaf, ed., Geomorphic Hazards, J.Wiley and Sons, New York, p. 55–67.

    Google Scholar 

  4. Caine, N. (1980) The rainfall intensity-duration control of shallow landslides and debris flowsGeografiska Annaler62A 23–27.

    Article  Google Scholar 

  5. Campbell, R. H. (1975) Soil slips, debris flows and rainstorms in the Santa Monica Mountains and vicinity, southern CaliforniaU.S. Geol. Survey Prof. Paper851 51 pp.

    Google Scholar 

  6. Cannon, S. H. (1988) Regional rainfall-threshold conditions for abundant debris-flow activity, in S.D. Ellen and Wieczorek, G. F., (eds.) Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay region, CaliforniaU.S. Geol. Survey Prof. Paper1434 35–42.

    Google Scholar 

  7. Cannon, S. H. and Ellen, S. D. (1985) Rainfall conditions for abundant debris avalanches, San Francisco Bay region, CaliforniaCalifornia Geology38 267–272.

    Google Scholar 

  8. Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P. (1991) GIS techniques and statistical models in evaluating landslide hazardEarth Surface Processes and Landforms16 427445.

    Article  Google Scholar 

  9. Cruden, D.M. and Vames, D.J. (1996) Landslide types and processes in Turner, A.K., and Schuster, R.L, eds.Landslides investigation and mitigation: Special Report 247, Transportation Research Board, National Academy Press, Washington, D.C. 36–75.

    Google Scholar 

  10. DeGraff, J. V. (1990) Landslide dams from the November 1988 storm event in southern ThailandLandslide NewsJapan Landslide Society, Tokyo 4 12–15.

    Google Scholar 

  11. Ellen, S., Peterson, D.M., and Reid, G.O. (1982) Map showing areas susceptible to different hazards from shallow landsliding, Marin County and adjacent parts of Sonoma County, CaliforniaU.S. Geological Survey mapMF 1406.

    Google Scholar 

  12. ESRI (1993)Understanding GIS-- The ARC/INFO method:Environmental Systems Research Institute, Inc., J. Wiley and Sons, New York, 535 p.

    Google Scholar 

  13. Guariguata, M.R and Larsen, M.C. (1990) Preliminary map showing landslides in El Yunque quadrangle, Puerto RicoU.S. Geological Survey Open-file report89–257.

    Google Scholar 

  14. Guidicini, G. and Iwasa, O.Y. (1977) Tentative correlation between rainfall and landslides in a humid tropical environmentBull. of the International Assoc. of Eng. Geol.16 13–20.

    Article  Google Scholar 

  15. Haldemann, E.G. (1956) Recent landslide phenomena in the Rungwe volcanic area, TanganyikaTanganyika Notes Records43 3–14.

    Google Scholar 

  16. Hencher, S.R. (1987) The implications of joints and structures for slope stability, in M.G. Anderson and K.S. Richards, (eds.)Slope stabilityJohn Wiley and Sons, New York, 145–186.

    Google Scholar 

  17. Irigaray F., C., del Castillo. T., El Hamdouni, R., and Chacon Montero, J. (1999) Verification of landslide susceptibility mapping: a case studyEarth Surface Processes and Landforms24 537–544.

    Google Scholar 

  18. Jager, Stefan and Wieczorek, G.F. (1994) Landslide susceptibility in the Tully Valley area, Finger Lakes region, New YorkU.S. Geological Survey Open-file report94–615.

    Google Scholar 

  19. Jibson, R. W. (1989) Debris flows in southern Puerto RicoGeol. Soc. of Amer. Special Paper236 29–55.

    Article  Google Scholar 

  20. Jones, A. (1973) Landslides of Rio de Janeiro and the Serra da Araras escarpment, BrazilU.S. Geol. Survey Prof Paper697 42 pp.

    Google Scholar 

  21. Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M. ill, Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., and Zatkin, R. S. (1987) Real-time landslide waming during heavy rainfallScience238 921–925.

    Article  Google Scholar 

  22. Kingsbury, P.A., Hastie, W.J., and Harrington, C.D. (1991) Regional landslip hazard assessment using a Geographic Information System in Bell, D.H., (ed.), LandslidesProceedings of the Sixth International SymposiumFebruary 10–14, 1992, Christchurch, New Zealand, Balkema Pub., Rotterdam, 995–999.

    Google Scholar 

  23. Larsen, M.C., Collar, P.D., and Stallard, R.F. (1993) Research plan for the investigation of water, energy, and biogeochemical budgets in the Luquillo mountains, Puerto RicoU.S. Geological Survey Open-file Report92-I50 19 p.

    Google Scholar 

  24. Larsen, M. C. and Torres-Sanchez, A. J. (1992) Landslides triggered by Hurricane Hugo in eastern Puerto Rico, September 1989Caribbean Journal of Science28 113–125.

    Google Scholar 

  25. Larsen, M.C. and Simon, A. (1993) Rainfall-threshold conditions for landslides in a humid-tropical system, Puerto RicoGeografiska Annaler75A 13–23.

    Article  Google Scholar 

  26. Larsen, M.C. and Parks, J.E. (1997) How wide is a road? The association of roads and mass-wasting disturbance in a forested montane environmentEarth Surface Processes and Landforms22 835–848.

    Article  Google Scholar 

  27. Larsen, M.C. and Parks, J.E. (1998) Map showing landslide hazards in the municipality of Comerio, Puerto RicoU.S. Geological Survey Open-file Report98–566, 1 sheet.

    Google Scholar 

  28. Larsen, M.C. and Torres Sanchez, A.J. (1998) The frequency and distribution of recent landslides in three montane tropical regions of Puerto RicoGeomorphology24 309–331.

    Article  Google Scholar 

  29. Maharaj, R.J. (1993) Landslide processes and landslide susceptibility analysis from an upland watershed: a case study from St. Andrew, Jamaica, West IndiesEngineering Geology34 53–79.

    Article  Google Scholar 

  30. Mehrotra, G.S., Sarkar, S., and Dharmaraju, R. (1991) Landslide hazard assessment in Rishikesh-Tehri area, Garhwal Himalaya in Bell, D.H., ed. LandslidesProceedings of the Sixth International SymposiumFebruary 10–14, 1992, Christchurch, New Zealand, Balkema Pub., Rotterdam, 1001–1007.

    Google Scholar 

  31. de Meis, R.M. and Silva, R. (1968) Mouvements de mass récents a Rio de Janeiro: une etude de géomorphologe dynamiqueRév. Géomorph. Dynamique18 145–151.

    Google Scholar 

  32. Monroe, W.H. (1979) Map showing landslides and areas of susceptibility to landsliding in Puerto RicoU.S. Geological Survey Miscellaneous Investigations Series MapI-1148 I sheet, 1:240,000 scale.

    Google Scholar 

  33. Morgan, B.A., Wieczorek, G.F., and Campbell, R.H. (1999) Map of rainfall, debris-flows, and flood effects of the June 27, 1995, storm in Madison County, VirginiaU. S. Geological Survey Miscellaneous Investigation Series Map1–2623A, 1:24,000.

    Google Scholar 

  34. Neary, D. G. and Swift, L. W. (1987) Rainfall thresholds for triggering a debris avalanching event in the southern Appalachian Mountains, in J. E. Costa and G. F. Wieczorek (eds.), Debris Flows/Avalanches: Processes, Recognition and MitigationGeol. Soc. of America: Reviews in Engineering Geology7 8192.

    Google Scholar 

  35. Pitts, J. (1992) Slope stability in Singapore, in A.Gupta and J. Pitts, (eds.)Physical adjustments in a changing landscape The Singapore storySingapore University Press, Singapore, 259–300.

    Google Scholar 

  36. Pomeroy, J.S. (1988) Map showing landslide susceptibility in MarylandU.S. Geological SurveyMF-2048.

    Google Scholar 

  37. Schuster, R.L. (1978) Introduction, in Schuster, R. L., and Krizek, R. J., (eds.)Landslides analysis and control: National Research Council, Transportation Research Board Special Report 176, p. 1–10.

    Google Scholar 

  38. So, C.L. (1971) Mass movements associated with the rain storm of June 1966 in Hong KongTrans. Inst. Brit. Geographers53 55–65.

    Article  Google Scholar 

  39. Starkel, L. (1970) Cause and effects of a heavy rainfall in Darjeeling and in the Sikkim HimalayasJour. Bombay Natural History Soc.67:1–6.

    Google Scholar 

  40. Taylor, F. and Brabb, E.E. (1986) Map showing landslides in California that have caused fatalities or at least $1,000,000 in damages from 1906 to 1984U.S. Geological Survey Miscellaneous Field Studies MapMF-1867, one sheet.

    Google Scholar 

  41. Temple, P. H. and Rapp, A. (1972) Landslides in the Mgeta area, Western Uluguru Mountains, TanzaniaGeografiska Annaler54A 157–193.

    Article  Google Scholar 

  42. Terzaghi, K. (1950) Mechanism of landslidesGeological Society of America Engineering GeologyBerkey volume, 83–123.

    Google Scholar 

  43. Wentworth, C.K. (1943) Soil avalanches on Oahu, HawaiiBull. Geol. Soc. Amer.54 53–64.

    Google Scholar 

  44. Wieczorek, G.F. (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reductionBulletin of the Association of Engineering Geologists21 337–342.

    Google Scholar 

  45. Wieczorek, G. F. (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California, in J. E. Costa and G. F. Wieczorek, (eds.), Debris Flows/Avalanches: Processes, Recognition and Mitigation.Geol. Soc. of America Reviews in Engineering Geology 7 93–104.

    Google Scholar 

  46. Wilson, R.C., Torikai, J. D., and Ellen, S. D. (1992) Development of rainfall warning thresholds for debris flows in the Honolulu district, OahuU.S. GeoL Survey Open-file report92–521 35 pp.

    Google Scholar 

  47. Wu, T.H., Tang, W.H., and Einstein, H.H. (1996) Landslide hazard and risk assessment in Turner, A.K., and Schuster, R.L, eds.Landslides investigation and mitigation: Special Report 247, Transportation Research Board, National Academy Press, Washington, D.C. 106–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Larsen, M.C. (2001). Evaluation of Temporal and Spatial Factors that Control the Susceptibility to Rainfall-Triggered Landslides. In: Gruntfest, E., Handmer, J. (eds) Coping With Flash Floods. NATO Science Series, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0918-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0918-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6826-7

  • Online ISBN: 978-94-010-0918-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics