Skip to main content

Boundary Sources of Potential Vorticity in Geophysical Circulations

  • Chapter
IUTAM Symposium on Developments in Geophysical Turbulence

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 58))

Abstract

The global ocean is so heavily density-stratified that forcing is mostly restricted to lie at or near its top and bottom boundaries. The general circulation is determined by mass, heat and momentum exchange with the atmosphere and the solid Earth. The primary conservible tracers, potential vorticity (PV) and potential density, are also forced at these boundaries, and yet it is difficult to assess the rate of PV influx from the other, more ‘natural’ boundary conditions. Here we argue that intersection of surfaces of constant potential density with the boundaries provides reservoirs of large PV, which can be tapped by the circulation. We concentrate on the bottom source, and use a new isopycnal numerical model to examine it. The sloping bottom of the ocean produces a broad region of PV reservoir, and it promotes significant change in both the interior general circulation and the structure of western boundary currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. L. T., and KillworthP. D.(1977) Spin-up of a stratified ocean with topographyDeep-Sea Res.22, 709–732.

    Article  Google Scholar 

  • Arakawa, A., and Hsu, Y.-J. G (1990) Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations.Mon. Wea. Rev. 1181960–1969.

    Article  ADS  Google Scholar 

  • Bretherton, F.(1966) Critical layer instability in baroclinic flows.Quart. J. Roy. Meteor. Soc. 92325–334.

    Article  ADS  Google Scholar 

  • Cessi, P.(1991) Laminar separation of colliding western boundary currents.J. Mar. Res. 49697–717.

    Article  Google Scholar 

  • Eby, M., and Holloway, G.(1994) Sensitivity of a large-scale ocean model to a parameterization of topographic stressJ. Phys. Oceanog. 242577–2588.

    Article  ADS  Google Scholar 

  • Fofonoff, N. P.(1954) Steady flow in a frictionless homogeneous oceanJ. Mar. Res. 13254–262.

    MathSciNet  Google Scholar 

  • Garrett, C., MacCreadyP.and Rhines P. (1993) Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundaryAnn. Rev. Fluid Mech. 25291–323.

    Article  ADS  Google Scholar 

  • Garner, S. T., Nakamura, N., and Held, I. M.(1992) Nonlinear equilibration of two-dimensional Eady waves: New perspectiveJ. Atmos. Sci. 491984–1996.

    Article  ADS  Google Scholar 

  • Hallberg, R.(1995)Some aspects of the circulation in ocean basins with isopycnals intersecting sloping boundariesPh. D. thesis, University of Washington, 244 pp.

    Google Scholar 

  • Haynes, P. H. and M. E. McIntyre (1987) On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forcesJ. Atmos. Sci. 44828–841.

    Article  ADS  Google Scholar 

  • Luyten, J. R., Pedlosky, J. and Stommel, H.(1983) The ventilated thermoclineJ. Phys. Oceanog. 13292–309.

    Article  ADS  Google Scholar 

  • MacCready, P. and Rhines P. B.(1991) Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-upJ. Fluid Mech.223631–661.

    Article  ADS  Google Scholar 

  • MortonB.R. (1984) The generation and decay of vorticityGeophys. Astrophys. Fl. Dyn. 28277–308.

    Article  ADS  MATH  Google Scholar 

  • Nakamura, N. and Held, I. M.(1989) Nonlinear equilibration of two-dimensional Eady wavesJ. Atmos. Sci. 463055–3064.

    Article  ADS  Google Scholar 

  • Pedlosky, J.(1987)Geophysical Fluid DynamicsSpringer-Verlag, New York, 710 pp.

    Book  MATH  Google Scholar 

  • Rhines, P. B.(1979) Geostrophic turbulence, Ann.Rev. Fluid Meek 11401–441.

    Article  ADS  Google Scholar 

  • Rhines, P. B. and Young, W. R.(1982) A theory of the wind-driven circulation. I. Mid-Ocean GyresJ. Mar. Res. 40(Suppl.), 559–596.

    Google Scholar 

  • Salmon, R.(1992) A two-layer Gulf Stream over a continental slope, J.Mar. Res. 50341–365.

    Article  Google Scholar 

  • Salmon, R.(1998)Lectures on Geophysical Fluid DynamicsOxford University Press, Oxford, 378 pp.

    Google Scholar 

  • Schar, C. and Duran, D. R.(1997) Vortex formation and vortex shedding in continuously stratified flows past isolated topographyJ. Atmos. Sci. 54534–554.

    Article  ADS  Google Scholar 

  • Schar, C. and Smith, R. B.(1993a) Shallow-water flow past isolated topography. Part I: Vorticity production and wake formationJ. Atmos. Sci. 501373–1400.

    Article  MathSciNet  ADS  Google Scholar 

  • Schar, C. and Smith, R.B.(1993b) Shallow-water flow past isolated topography. Part II: Transition to vortex sheddingJ. Atmos. Sci. 501401–1412.

    Article  MathSciNet  ADS  Google Scholar 

  • Stommel, H.(1948) The westward intensification of wind-driven ocean currents.Trans. Amer. Geophys. Union 29202–206.

    Article  ADS  Google Scholar 

  • Stommel, H. and Arons, A.B.(1972) On the abyssal circulation of the world ocean-V. The influence of bottom slope on the broadening of inertial boundary currentsDeep-Sea Res. 19707–718.

    Google Scholar 

  • Sverdrup, H. U.(1947) Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the Eastern PacificProc. Nat. Acad. Sci. 33318–326.

    Article  MathSciNet  ADS  Google Scholar 

  • Thompson, L.(1995) The effect of continental rises on the wind-driven ocean circulationJ. Phys. Oceanog. 251296–1316..

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hallberg, R., Rhines, P.B. (2000). Boundary Sources of Potential Vorticity in Geophysical Circulations. In: Kerr, R.M., Kimura, Y. (eds) IUTAM Symposium on Developments in Geophysical Turbulence. Fluid Mechanics and Its Applications, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0928-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0928-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3794-5

  • Online ISBN: 978-94-010-0928-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics