Skip to main content

Quelques Problèmes de Cinétique Conformationnelle de Systèmes Coopératifs

  • Conference paper
Dynamic Aspects of Conformation Changes in Biological Macromolecules
  • 69 Accesses

Résumé

Ayant souligné l’importance de la coopérativité en biologie, on restreint le sujet à la cinétique des transconformations coopératives de macromolécules. Le problème théorique est alors celui de la cinétique du modèle d’Ising à une dimension.

Deux solutions sont résumées (cas des chaînes longues; cas de réduction à un modèle séquentiel).

La cinétique de l’isomérisation cis-trans de la poly-L-proline illustre certains aspects de la théorie, tandis que des mesures nouvelles de l’absorption des ultrasons dans des solutions d’acides poly-L- glutamique montrent l’importance des fluctuations du nombre de séquences hélice (ou pelote) ininterrompues.

Des modèles simples, illustrés par leurs applications, sont finalement passés en revue (modèle par tout ou rien utilisé par Eigen et Pörschke dans l’étude cinétique de l’appariement des bases des oligonucléotides; un modèle non-arrhénien à deux états; un modèle à trois états conduisant à interpréter certaines expériences de saut de température lent pour des solutions de protéines pancréatiques par l’existence d’une conformation intermédiaire).

Summary

While the utmost importance of cooperativity in biological processes is underlined, the subject is restricted to linear chain molecules and the kinetics of their transconformations, such as the helix-coil transition of polypeptides and of oligonucleotides, and protein unfolding and refolding.

The theoretical problem is connected with the kinetics of a linear Ising lattice. An exact solution for long chains, based on the triplet closure approximation, is reviewed, as well as an early calculation giving the initial change with time of the helicity, after a sudden perturbation, in terms of a mean relaxation time.

As an illustration of the latter theoretical results, experiments on the poly-L-proline cis-trans isomerization are briefly described. On the other hand, new ultrasonic studies of the kinetics of the helix-coil transition of poly-L-glutamic acid are reported, showing that fluctuations of the number of uninterrupted helix (or coil) sequences contribute to the ultrasonic absorption.

An important case of reduction of the general (Ising) problem is that of sequential processes. An example is described, for which the eigenvalues of the transition rate matrix can be obtained easily, thus leading to an exact solution.

Simple models can be quite successful in treating kinetic problems of cooperative systems. An example is provided by the all-or-none model used by Eigen and Pörschke in their investigation of the oligoribouridylic-oligoriboadenylic acid system. The nucleation process was shown to involve three A.U base pairs, as in the codon-anticodon interaction, and the activation enthalpy was found to be negative.

A non-Arrhenius two-state model, adequate for studying the kinetics of cooperative processes of the type considered, is described; it leads also to a negative activation enthalpy, in a somewhat different way.

Analysis of the kinetics of proteins unfolding and refolding, using three-state models, is finally reviewed. The values of the relaxation amplitudes show that a three-state system can exhibit one relaxation time only. Thus, with the aid of certain assumptions, one can interpret in terms of an intermediate state slow T-jump measurements on pancreatic proteins as a function of temperature. The intermediate state must then have a nonnegligible population at certain temperatures. A simple model, with two identical steps, leads to satisfactory agreement for chymotrypsin-α, thus suggesting the reality of the postulated intermediate state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Prigogine, Y.: 1969, dans Theoretical Physics and Biology (ed. by Marois), North-Holland Publ. Co., Amsterdam, p. 23.

    Google Scholar 

  2. Zimm, B.H. et Bragg, J.K.: 1959, J. Chem. Phys. 31, 526.

    Article  CAS  Google Scholar 

  3. Glauber, R. J.: 1963, J. Math. Phys. 4, 294.

    Article  Google Scholar 

  4. Silberberg, A. et Simha, R.: 1968, Biopolymers 6, 479.

    Article  CAS  Google Scholar 

  5. Rabinowitz, P., Silberberg, A., Simha, R., Loftus, E.: 1969, Adv. Chem. Phys. XV, 281.

    Google Scholar 

  6. Gô, N.: 1967, J. Phys. Soc. Japan 22, 416.

    Article  Google Scholar 

  7. Silberberg, A. et Simha, R.: 1972, Macromolecules 5, 332.

    Article  CAS  Google Scholar 

  8. Schwarz, G.: 1971, Ber. Bunsengesell. Phys. Chemie 75, 40.

    CAS  Google Scholar 

  9. Schwarz, G.: 1964, Ber. Bunsengesell. Phys. Chemie 68, 843.

    CAS  Google Scholar 

  10. Winklmair, D., Engel, J., et Ganser, V.: 1971, Biopolymers 10, 721.

    Article  CAS  Google Scholar 

  11. Eigen, M.: 1967, dans Fast Reactions and Primary Processes in Chemical Kinetics (ed. by S. Claesson), Interscience, New York, p. 333; Pörschke, D.: 1968, Thèse, Braunschweig; Pörschke, D. et Eigen, M.: 1971, J. Mol. Biol. 62, 361.

    Google Scholar 

  12. Cerf, R.: 1969, C. R. Acad. Sei Paris 269-D, 2140.

    Google Scholar 

  13. Tsong, T.Y., Baldwin, R.L., et Me Phie, P.: 1972, J. Mol. Biol. 63, 453.

    Article  CAS  Google Scholar 

  14. Baldwin, RL.: 1968, dans Molecular Associations in Biology (ed. by B. Pullman), Academic Press, New York, p. 145.

    Google Scholar 

  15. Crothers, D.M., Kallenbach, N., et Davidson, N.: 1968, J. Am. Chem. Soc. 90, 3560.

    Google Scholar 

  16. Schwarz, G.: 1972, Theoret. Biol. 36, 569.

    Article  CAS  Google Scholar 

  17. Schwarz, G.: 1968, Biopolymers 6, 873.

    Article  CAS  Google Scholar 

  18. Zana, R.: 1972, Suppl. J. Phys. 33C6, 108.

    Google Scholar 

  19. Michels, B. et Cerf, R.: 1972, C.R. Acad. Sci. Paris 274-D, 1096.

    Google Scholar 

  20. Michels, B.: 1972, Thèse, Strasbourg.

    Google Scholar 

  21. Zana, R. et Lang, J.: 1970, J. Phys. Chem. 74, 2734.

    Article  CAS  Google Scholar 

  22. Tondre, C. et Zana, R.: 1971, J. Phys. Chem. 75, 3367.

    Article  CAS  Google Scholar 

  23. Cerf, R.: 1972, Suppl, J. Phys. 33C6, 99.

    Google Scholar 

  24. Saksena, T.K., Michels, B., et Zana, R.: 1968, J. Chim. Phys. 65, 597.

    CAS  Google Scholar 

  25. Barksdale, A.D. et Stuehr, J.E.: 1972, J. Amer. Chem. Soc. 94, 3334.

    Article  CAS  Google Scholar 

  26. Pörschke, D.: 1971, Biopolymers 10, 1989.

    Article  Google Scholar 

  27. Cerf, R.: 1970, C.R. Acad. Sci. Paris 270-C, 1075.

    Google Scholar 

  28. Cerf, R.: 1971, Suppl. J. Phys. 32C5a, 275.

    Google Scholar 

  29. Fünfschilling, O., Lemaréchal, P., et Cerf, R.: 1970, C.R. Acad. Sci. Paris 270-C, 569; 1971, Chem. Phys. Letters 12, 365; Lemaréchal, P.: 1971, Thèse, Strasbourg; Funfschilling, O.: 1972, Thèse, Strasbourg.

    Google Scholar 

  30. Bauer, H. et Hässler, H.: 1968, dans 6ème Congr. Acoust. Tokyo J-5-11.

    Google Scholar 

  31. Schellman, J.: 1955, C.R. Lab. Carlsberg 29, 230.

    CAS  Google Scholar 

  32. Pohl, F.: 1968, Eur. J. Biochem. 4, 373; 1968, 7, 146; 1969, FEBS Letters 3, 60.

    Article  Google Scholar 

  33. Schechter, A.N., Chen, R.F., et Anfinsen, C.B.: 1970, Science 167, 886.

    Article  CAS  Google Scholar 

  34. Ikai, A. et Tanford, C.: 1971, Nature 230, 100.

    Article  CAS  Google Scholar 

  35. Lumry, R., Biltonen, R., et Brandts, J.: 1964, Biopolymers 4, 917.

    Article  Google Scholar 

  36. Tanford, C.: 1968, Advan. Protein Chem. 23, 121.

    Article  CAS  Google Scholar 

  37. Cerf, R.: 1970, C. R. Acad. Sci. Paris 271-D, 2403; 1971, 272-D, 747.

    Google Scholar 

  38. Tsong, T.Y., Baldwin, R.L., et Elson, E.L.: 1971, PNAS 68, 2712.

    Article  CAS  Google Scholar 

  39. Eigen, M. et De Maeyer, L.: 1963, dans Techniques of Organic Chemistry, (S.F. Friess, E.S. Lewis, and A.W. Weissberger, eds.) Interscience, New York, VIII-2, p. 895.

    Google Scholar 

  40. Thusius, D.: 1972, J. Am. Chem. Soc. 94, 356.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Cerf, R. (1973). Quelques Problèmes de Cinétique Conformationnelle de Systèmes Coopératifs. In: Sadron, C. (eds) Dynamic Aspects of Conformation Changes in Biological Macromolecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2579-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2579-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2581-2

  • Online ISBN: 978-94-010-2579-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics