Skip to main content

Principles of Froth Flotation

  • Chapter
Mineral Processing

Abstract

To achieve selective flotation of mineral particles, whether by their removal in a froth or by the less-used method of agglomeration, specific characteristics of one or more of the mineral species present must be adequately developed. Provided these produce sufficiently marked differences of behaviour in the presence of air, they can then be exploited. If a particle is to be held in a mineralised froth, it must be ground to a fineness at which downward pull of gravity is insufficient to overcome its adhesion to an air-water interface. The usual commercial separation entails the lifting of a heavy metal sulphide away from a relatively light gangue by the agency of air bubbles rising through the pulp. This buoyancy results from adhesion of the particle to a comparatively large bubble. The adhesive force with which a particle clings to the air-water interface is opposed by the gravitational drag due to its mass. For successful exploitation of differences in surface properties most ore minerals must be ground finer than 48–65 mesh. A light mineral such as coal (density circa 1.4) can be floated at 10 mesh, provided the bubble system on which it is borne is developed as a quiet layer of froth. Random changes of direction, acceleration, and collision may tear too large a particle out of its bubble. At the other end of the flotation size-range, the surface characteristics of all particles in the pulp are more similar at very fine sizes. Somewhere below 10μ, and for most ores at about 3μ to 5μ, it becomes increasingly difficult to control and exploit differences in surface properties with the accuracy needed to depress gangue, and float concentrate. Typically, flotation is practised between the limits 60 mesh and 5μ. This is quite apart from any consideration of “break” or of liberation mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rickard, T. A. (1916). The Flotation Process, Mining & Scientific Press.

    Google Scholar 

  2. (1961). Quarterly of Colorado School of Mines Vol. 56, No. 3 (Vols. 1 and 2).

    Google Scholar 

    Google Scholar 

  3. (162). Froth Flotation, 50th Ann. Volume, A.I.M.M.E.

    Google Scholar 

  4. del Guidice, G. R. M. (1934). Trans. A.I.M.M.E.

    Google Scholar 

  5. Gaudin, A. M. (1957). Flotation, McGraw-Hill.

    Google Scholar 

  6. Mellgren, O., and Subba Rao, M. G. (1963). Trans. I.M.M. (London), 72.

    Google Scholar 

  7. Dzieniewicz, J., and Pryor, E. J. (1950). Trans. I.M.M. (London), 59.

    Google Scholar 

  8. Sutherland, K. L., and Wark, I. W. (1955). Principles of Flotation, Aust. I.M.M.

    Google Scholar 

  9. Young, A. (1805). Phil. Trans. Roy. Soc., 84.

    Google Scholar 

  10. Leja, J., and Poling, G. W. (1960). Int. Min. Proc. Congress, I.M.M. (London).

    Google Scholar 

  11. Gaudin, A. M., et al. (1963). 6th Int. Min. Proc. Congress (Cannes), Pergamon.

    Google Scholar 

  12. Cooke, S. R. B., and Digre, M. Trans. A.I.M.M.E., 184.

    Google Scholar 

  13. Sun, S. C., and Troxell, R. C. Trans. A.I.M.M.E., 196.

    Google Scholar 

  14. Pryor, E. J., and Liou, K. B. (1948). Trans. I.M.M. (London)’ Oct.

    Google Scholar 

  15. Moilliett, J. L., Collie, B., and Black, W. (1961). Surface Activity, Spon.

    Google Scholar 

  16. Adam, N. K. (1941). The Physics and Chemistry of Surfaces, O.U.

    Google Scholar 

  17. Modi, H. J., and Furstenau, D. W. (1960). Trans. A.I.M.M.E., 217.

    Google Scholar 

  18. Eigeles, M. A. (1950). Metallurgizdat.

    Google Scholar 

  19. Gaudin, A. M., and Tournesac, G., (1954). First World Congress on Detergence, Paris.

    Google Scholar 

  20. Taggart, A. F. (1945). Handbook of Mineral Dressing, Wiley.

    Google Scholar 

  21. Kivalo, P., and Lehmusvaara, E. (1957). Int. Min. Proc. Congress, Stockholm.

    Google Scholar 

  22. Br. Patent 708475; U.S. Patent 2698088.

    Google Scholar 

  23. Taggart, A. F., and Arbiter, N. (1946). Trans. A.I.M.M.E., 169.

    Google Scholar 

  24. Bruyn, P. L. de. (1955). Trans. A.I.M.M.E., 202.

    Google Scholar 

  25. Hines, P. R. (1959). Trans. A.I.M.M.E., 214.

    Google Scholar 

  26. Tucker, K., et al. Trans. A.I.M.M.E., 183.

    Google Scholar 

  27. Sidgwick, N. V. (1950). The Chemical Elements and Their Compounds, O.U.P.

    Google Scholar 

  28. Sollengerger, C., and Greenwatt, R. B. (1957). Trans. I.M.M. (London), 65.

    Google Scholar 

  29. Klassen, V. I., and Mokrousov, V. A. Introduction to the Theory of Flotation, Butterworth.

    Google Scholar 

  30. Derjaguin, B. V., and Dukhin, S. S. Trans. I.M.M. (London), 70.

    Google Scholar 

  31. 31.U.S. Patent 2,990,(58).

    Google Scholar 

  32. Green, E. W., and Duke, J. B. (1962). Trans. S.M.E., A.I.M.M.E., Dec.

    Google Scholar 

  33. Sebba, F. (1959). Nature, Oct., 184.

    Google Scholar 

  34. Sebba, F. ( 1963). Royal School of Mines Jnl.

    Google Scholar 

  35. Sebba, F. (1962). Ion Flotation, Elsevier.

    Google Scholar 

  36. Haeck, J., (1964). Chemical Dictionary, Churchill.

    Google Scholar 

  37. Taggart, A. F. (1951). Elements of Ore Dressings, Wiley.

    Google Scholar 

  38. Whelan, P. F., and Brown, D. J. (1956). Trans. I.M.M. (London), 65.

    Google Scholar 

  39. Plaksin, I. N. et al. (1957/58). Trans. I.M.M. (London), 67.

    Google Scholar 

  40. Tomlinson, H. S., and Fleming, M. G. (1963). 6th I.M.P.C. (Cannes), Pergamon.

    Google Scholar 

  41. Chi, J. W. H., and Young, E. F. (1962/63). Trans. I.M.M. (London), 72.

    Google Scholar 

  42. Imaizumi, T., and Inoue, T. (1963). 6th I.M.P.C. (Cannes), Pergamon.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Elsevier Publishing Company Limited

About this chapter

Cite this chapter

Pryor, E.J. (1965). Principles of Froth Flotation. In: Mineral Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2941-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2941-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2943-8

  • Online ISBN: 978-94-010-2941-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics