Skip to main content

Intertheory Relations

  • Chapter
Induction, Physics and Ethics

Part of the book series: Synthese Library ((SYLI,volume 31))

Abstract

While there exists a vast literature devoted to logical analysis of physical theories the literature on intentheory relations is almost nonexistent. True, intertheory relations are touched upon by many authors, both scientists and philosophers of science, and the interest in intertheory relations is rising rapidly. Yet the systematic study of them has hardly begun, a notable exception being the work of Tisza1 which, however, is complementary to rather than concurrent with the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

c-theory:

Einstein’s Special Theory

c-K-theory:

Einstein’s General Theory

CPM:

Classical Point Mechanics

h-:

quantum, quantum mechanical

HS:

Hilbert Space

ITR:

intertheory relation [al]

MF:

mathematical formalism (of a physical theory)

MFS :

mathematical substructure (of a physical theory)

MFS :

mathematical superstructure (of a physical theory)

model1 :

model in the ordinary sense (if B is a model1 of A, B is on a higher level of abstraction than A)

model2 :

model in the sense of Mathematical Logic (if B is a model2, of A, B is on a lower level of abstraction than A)

o-:

classical, not containing any universal constant

PM:

Point Mechanics, mechanics of mass points

PI:

physical interpretation (of an MF)

prob1 :

distribution probability

prob2 :

transition probability

QFT:

Quantum Field Theory

QM:

Quantum Mechanics, quantum mechanical

RD(T):

region of definition of T

RV(T):

range of validity of T

S f :

classical system of f degrees of freedom

T:

(physical) theory

References

  1. Tisza, L., The Conceptual Structure of Physics’, Reviews of Modern Physics 35 (1963) 151–85.

    Article  Google Scholar 

  2. The subject matter of Mathematical Logic, a subject taught at some universities, is the logic of mathematics rather than mathematical logic which is logic treated in a mathematical way or, equivalently, mathematics admitting logical models2.

    Google Scholar 

  3. Strauss, M., ‘Mathematics as Logical Syntax — A Method to Formalize the Language of a Physical Theory’, Journal of Unified Science (Erkenntnis) 7 (1938).

    Google Scholar 

  4. Strauss, M., ‘Zur Begründung der statistischen Transformationstheorie der Quantenphysik’, Sitzungsberichte der Berliner Akademie der Wissenschaften, Physikalischmathematische Klasse 27 (1936) 382–98; ‘Grundlagen der modernen Physik’, in Mikrokosmos-Makrokosmos Vol. II (ed. by H. Ley and R. Loether ), Berlin 1967.

    Google Scholar 

  5. With c→ ∞ the Minkowski invariant (ΔS)2 = c2(ΔT)2 — (ΔL)2 does not split up into the two invariants of Newtonian space-time but becomcs infinite.

    Google Scholar 

  6. For a formulation of c-kinematics with redundant parameters cf. M. Strauss, ‘On a Generalized Lorent Transformation’, Annalen der Physik 16 (1965) 105–13.

    Google Scholar 

  7. According to present terminology the two ‘systems’ are models1 rather than theories.

    Google Scholar 

  8. Landé, A., New Foundations of Quantum Mechanics, Cambridge 1965.

    Google Scholar 

  9. Cf. ref. 4.

    Google Scholar 

  10. Strauss, M., ‘The Lorentz Group: Axiomatics — Generalizations — Alternatives’, Wissenschaftliche Zeitschrift der Friedrich-Schiller-Universität Jena, Mathematisch-Naturwissenschaftliche Reihe 15 (1966) 109–18, and ref. 4, Part III.

    Google Scholar 

  11. Cf., e.g., H. Grad, ‘Levels of Description in Statistical Mechanics and Thermodynamics’, and Edwin T. Javnes, ‘Foundations of Probability Theory and Statistical Mechanics’, in Delaware Seminar in the Foundations of Physics (ed. by M. Bunge ), Berlin-Heidelberg-New York 1967.

    Google Scholar 

  12. Havas, P., ‘Foundation Problems in General Relativity’, in Delaware Seminar in the Foundations of Physics (ed. by M. Bunge ), Berlin-Heidelberg-New York 1967.

    Google Scholar 

Bibliography

  • Alexander, H.G.: 1956, The Leibniz-Clarke Correspondence, Manchester.

    Google Scholar 

  • Bateman, H.: 1909/10, ‘The Transformation of the Electrodynamic Equations’, Proc. London Math. Soc., ii. ser., 8, 223–264.

    Article  Google Scholar 

  • Cashmore, D.C.: 1963, ‘Integrable Transformations between Moving Observers’, Proc. Phys. Soc. 81, 181–185.

    Article  Google Scholar 

  • Cassirer, E. (ed.): 1904, G. W. Leibniz — Hauptschriften zur Grundlegung der Philosophie, Leipzig, pp. 242–245.

    Google Scholar 

  • Cunningham, E. : 1909/10, ‘The Principle of Relativity in Electrodynamics and an Extension thereof’, Proc. London Math. Soc., ii. ser., 8, 77–98.

    Article  Google Scholar 

  • Dautcourt, G.: 1964, ‘Die Newtonische Gravitationsthcorie als strenger Grenzfall der Allgemeinen Relativitätstheorie’, Acta Physica Polonica 25, 637–647.

    Google Scholar 

  • Einstein, A.: 1916a, ‘Die Grundlage der allgemeinen Relativitätstheorie’, Ann. d. Phys. 49, 771–814.

    Google Scholar 

  • Einstein, A.: 1916b, ‘Ernst Mach’, Phys. Z. 17, 101–104.

    Google Scholar 

  • Einstein, A.: 1918, ‘Prinzipielles zur allgemeinen Relativitätstheorie’, Ann. d. Phys. 55, 241.

    Article  Google Scholar 

  • Fock, V. A.: 1957, Three Lectures on Relativity Theory’, Rev. Mod. Phys. 29, 325.

    Article  Google Scholar 

  • Fock, V. A.: 1960, Theorie von Raum, Zeit und Gravitation, Berlin.

    Google Scholar 

  • Gürsey, F.: 1963, ‘Reformulation of General Relativity in Accordance with Mach’s Principle’, Ann. of Phys. 24, 211–242.

    Article  Google Scholar 

  • Heller, K.D.: 1964, Ernst Mach, Wien-New York.

    Google Scholar 

  • Herneck.F.: 1966, ‘Die Beziehungen zwischen Einstein und Mach, dokumentarisch dargestellt’, Wiss. Z. Friedrich-Schiller-Univ. Jena. Math.-Nat. R., Heft 1,15,1–14.

    Google Scholar 

  • Hönl, H.: 1966a, ‘Zur Geschichte des Machschen Prinzips’, Wiss. Z. Friedrich-Schiller-Univ. Jena, Math.-Nat. R., 15, 25–36.

    Google Scholar 

  • Hönl, EL: 1966b, ‘Das Machsche Prinzip und seine Beziehung zur Gravitationstheorie Einsteins’, in Einstein-Symposium (ed. by H.-J. Treder ), Berlin, pp. 238–278.

    Google Scholar 

  • Kretschmann, E.: 1917, ‘Über den physikalischen Sinn der Relativitätspostulate’, Ann. d. Phys. 53, 575.

    Google Scholar 

  • Leibniz, G.W.: 1691–95, Briefwechsel mit Huygens, s. Cassirer (1904).

    Google Scholar 

  • Lenin, W.I.: 1909, Materialismus und Empiriokritizismus, Moskau. (In Russian.)

    Google Scholar 

  • Lubkin, E.: 1961, Frames and Lorentz Invariance in General Relativity, Univ. of California, UCRL-9668 Internal, April 19.

    Google Scholar 

  • Mach, E.: 1883, Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt, Leipzig.

    Google Scholar 

  • Mach,E.: 1917, Erkenntnis und Irrtum, 3rd ed., Leipzig.

    Google Scholar 

  • Magic, W.F.: 1935, A Source Book in Physics, New York-London.

    Google Scholar 

  • Milne, E.A: 1948, Kinematic Relativity, Oxford.

    Google Scholar 

  • Noether, E.: 1918, ‘Invariante Variationsprobleme’, Göttinger Nachr., 235–257.

    Google Scholar 

  • Pirani, F.A.E.: 1957, Tetrad Formulation of General Relativity Theory’, Bull. Acad. Polon. Sci. 5, 143–147.

    Google Scholar 

  • Planck, M.: 1910, ‘Zur Machschen Theorie der physikalischen Erkenntnis’, Phys. Z. 11, 1186.

    Google Scholar 

  • Reichenbach,H.: 1924, ‘Die Bewegungslehre bei Newton, Leibniz und Huygens’, Kantstudien 29, 416.

    Google Scholar 

  • Schlipp, P.A. (ed.): 1949, Albert Einstein: Philosopher-Scientist, Evanston, Ill.

    Google Scholar 

  • Strauss, M.: 1938, ‘Mathematics as Logical Syntax — A Method to Formalize the Language of a Physical Theory’, J. of Unified Science (Erkenntnis) 7.

    Google Scholar 

  • Strauss, M.: 1957/58, ‘Grundlagen der Kinematik, I — Die Lösungen des kinematischen Transformationsproblcms’, Wiss. Z. Humboldt-Umv.-Berlin, Math.-Nat. R., 7, 609–616.

    Google Scholar 

  • Strauss, M.: 1960, ‘Max Planck und die Entstehung der Quantentheorie’, in Forschen und Wirken, Festschrift zur 150-Jahr-Feier d. Humboldt-Univ. Berlin, I, Berlin, pp.

    Google Scholar 

  • Strauss, M.: 1965, ‘On the Voigt-Palacios-Gordon Transformation and the Kinematics Implied by it’, Nuovo Cim. (X) 39, 658–666.

    Article  Google Scholar 

  • Strauss, M.: 1966, The Lorentz Group: Axiomatics — Generalizations — Alternatives’, Wiss. Z. Friedrich-Schiller- Univ. Jena, Math.-Nat. R. 15, 109–118.

    Google Scholar 

  • Strauss, M.: 1967a, ‘Zur Logik der Begriffe “Inertialsystem” und “Masse”’, in Ernst- Mach-Symposium 1966 in Freiburg (in press).

    Google Scholar 

  • Strauss, M.: 1967b, ‘Grundlagen der modernen Physik’, in Mikrokosmos — Makrokosmos, II (ed. by H. Ley ), Berlin 1967.

    Google Scholar 

  • Treder, H.-J.: 1966, ‘Lorentz-Gruppe, Einstein-Gruppe und Raum-Zeit-Struktur’, in Einstein-Symposium (ed. by H.-J. Treder ), Berlin, pp. 57–75.

    Google Scholar 

  • Wheeler, J.A.: 1963a, The Universe in the Light of General Relativity’, in Lectures in Theoretical Physics, V (ed. by W.E. Brittin, B.W. Downs, J. Downs ), New York-London-Sydney, pp. 504–527.

    Google Scholar 

  • Wheeler, J.A.: 1963b, ‘Mach’s Principle as Boundary Condition for Einstein’s Field Equations’, in Lectures in Theoretical Physics, V (ed. by W.E. Brittin, B.W. Downs, J. Downs ), New York-London-Sydney, pp. 528–578.

    Google Scholar 

References

  1. The expression ‘Machsches Prinzip’ is due to Einstein (1918) and denotes an interpretation of Mach’s comment on Newtonian mechanics in terms of Riemannian field theory: cf. Ref. 35.

    Google Scholar 

  2. Cf. e.g. Lenin (1909) and Planck (1910).

    Google Scholar 

  3. Cf. the review article on Mach’s Erkenntnis und Irrtum, by F. Jodl, republished as Appendix to this work on the direction of Mach. - Mach (1917), pp. 464–470.

    Google Scholar 

  4. Hönl (1966a, b), Gürsey (1963), Wheeler (1963b).

    Google Scholar 

  5. These names are used for what is commonly called ‘Special Theory of Relativity’ and ‘General Theory of Relativity’, respectively. These and similar names involving ‘relativity’ are misleading, as is now generally recognized. The novel name ‘(Einstein’s) Theory of Gravitation’ advocated by Fock does not show that the General Theory contains more than a theory of gravitation: the General Theory generalizes the Special Theory in such a way that a theory of gravitation is included.

    Google Scholar 

  6. This is no blemish on the theories’ inventor: the history of science knows no instance of a physical theory correctly understood by its author. The correct meaning of a new fundamental physical theory only emerges in a long and difficult process of logico-mathematical analysis and practical applications.

    Google Scholar 

  7. Noether (1918).

    Google Scholar 

  8. For proofs cf. Appendix.

    Google Scholar 

  9. Cf. Strauss (1938).

    Google Scholar 

  10. Cf. Strauss (1966).

    Google Scholar 

  11. Cf. M. Strauss (1966), section 4.

    Google Scholar 

  12. Except when the spacetime degenerates into a direct product of time and 3-space as in the Newtonian case. In general the metric of a 3-space t=const, is given by γαβ=gαβ+g0αg0β/g00 (α, β = 1, 2, 3). (In the General Theory this defines the metric of ‘light geometry’.)

    Google Scholar 

  13. From the mathematical point of view the two kinds of transformations refer to dual spaces related by the quantities (1) \({h_\alpha }\alpha = \frac{{\partial {X^\alpha }}}{{\partial {x^\alpha }}}\) and (2) \({h_\alpha }\alpha = \frac{{\partial {x^\alpha }}}{{\partial {X^\alpha }}}\), where the Greek indices refer to coordinate systems and the Latin indices to frames. To every ‘space tensor’ (tensor under coordinate transformations) T χλ αβ there exists a ‘frame tensor’ (tensor under frame transformations) T kl ab and vice versa according to (3) \({T_{kl \ldots }}^{ab \ldots } = {h_\alpha }^a{h_\beta }^b \ldots {h_k}^x{h_l}^\lambda \ldots {T_{x\lambda \ldots }}^{\alpha \beta \ldots }\) (4) \({T_{x\lambda \ldots }}^{\alpha \beta \ldots } = {h_a}^\alpha {h_b}^\beta \ldots {h_x}^k{h_\lambda }^l \ldots {T_{kl}}^{ab \ldots } \cdot \) In particular, the metrical tensors n ab and g αβ defined by (5) \({\left( {dS} \right)^2} = {\eta _{ab}}d{X^a}d{X^b} = {g_{\alpha \beta }}\left( x \right)d{x^\alpha }d{x^\beta }\) are related by (6) \({\eta _{ab}} = {h_a}^\alpha {h_b}^\beta {g_{\alpha \beta }}\left( { = \pm 1} \right)\) (7) \({g_{\alpha b}} = {h_\alpha }^a{h_\beta }^b{\eta _{ab}}\left( { = \pm 1} \right)\). Quantities like (5) that are invariant under both coordinate and frame transformations are to be called proper invariants. The frame tensors (3) have direct physical meaning since their values do not depend on the arbitrary choice of the coordinate system; they are the quantities that may be measured in a local frame. The space tensors (4) have no direct physical meaning; but of course space tensor equations have, since T χλ αβ ≡ 0 implies T kl ab… ≡ 0. For more comprehensive treatment cf. Lubkin (1961), Treder (1966), Pirani (1957).

    Google Scholar 

  14. Our ‘T’ means frame time (extended time), whereas our ‘t’ is a general time coordinate.

    Google Scholar 

  15. The decision what interval is to be considered ‘infinitesimal’ depends on the curvature R at the given world point: the condition is |dS|:R −2≪1.-The condition |dS| ≪ 1 would have no meaning since |dS| is a dimensional quantity (length). Thus, the existence of a second dimensional invariant R is necessary for a consistent and meaningful physical interpretation of the General Theory.

    Google Scholar 

  16. These technical terms are misleading since they suggest motion between the frames.

    Google Scholar 

  17. Any set γ may be said to be the direct product of sets γ1 and γ2 if and only if any element of γ is a pair of elements, one from γ1 and one from γ2, and vice versa.

    Google Scholar 

  18. This group Ki is given by the frame transformations (IEqua1) with (group conditions) f ( ii )(T)≡0 (identity) f ( ik )(T) = −f( ki )(T) (inverse) f ( il )(T) = f ( ik )(T) + f ( kl )(T) (composition). If f ( ik )(T)=v ( ik ) T, one obtains the familiar (proper) Galilei group. In general, f ( ik )(T) contains all time derivatives, as may be seen from serial expansion. Thus the (proper) Galilei group is but a small subgroup of K1.

    Google Scholar 

  19. The group K2 is given by the frame transformation (IEqua) with (group conditions) ω( i ) b ( i ) aba(identity) ω( i ) b ( k ) a × ω( k ) c ( i bca(inverse) ω( i ) b ( i ) a( k ) b ( i ) a× ω( l ) c ( k) b(composition).

    Google Scholar 

  20. A simply connected n-dimensional space of maximal symmetry admits N = n(n + 1)/2 independent symmetry operations; this gives N = 10 for n = 4. But Newtonian space-time is not a simply connected 4-dimensional space. (An element of Newtonian space-time is not a point but a pair of points.)

    Google Scholar 

  21. This was first shown by Cunningham (1910) and Bateman (1910). Cf. also Cashmore (1963) and Strauss (1966), p. 110.

    Google Scholar 

  22. This allows for additional conservation laws (such as that for electric charge).

    Google Scholar 

  23. Cf. Alexander (1956), Leibniz (1691–95).

    Google Scholar 

  24. Not vindicated is Newton’s conception of ‘absolute space’. However, this conception does not play any role in Newtonian mechanics: ‘absolute acceleration’ means acceleration with respect to any one of the inertial frames. For this reason it is usually held to be a metaphysical construct. Yet ‘absolute space’ as conceived by Newton is an inconsistent concept: on the one hand it is supposed to be homogeneous and isotropic like the ‘relative spaces’ of our experience, on the other hand a displacement in absolute space is supposed to correspond to a real or fictitious process, which implies inhomogencity. Thus, a mathematical model of Newton’s ‘absolute space’ is impossible. To turn Newton’s conception of ‘absolute space’ into a consistent notion it has to be reinterpreted to mean ‘uniquely determined preferential frame’. (The Maxwell equations were once thought to define such a frame.)

    Google Scholar 

  25. Cf. Dautcourt (1964) and the literature quoted there.

    Google Scholar 

  26. Mach (1883), quoted after Heller (1964), p. 47.

    Google Scholar 

  27. Mach (1883), quoted after Heller (1964), p. 32.

    Google Scholar 

  28. Schilpp (1949), p. 52.

    Google Scholar 

  29. Einstein (1916b), quoted after Heller (1964), p. 156.

    Google Scholar 

  30. Milne (1948).

    Google Scholar 

  31. Strauss (1957/58); cf. also Strauss (1966).

    Google Scholar 

  32. Mach (1883), quoted after Heller (1964), p. 34.

    Google Scholar 

  33. Mach (1883), quoted after Heller (1964), p. 39.

    Google Scholar 

  34. The exclusion of conservative forces depending on velocity by Newtonian mechanics was one of the reasons for Maxwell to reject the mechanical theory of Weber. He wrote: “(2) The mechanical difficulties, however, which are involved in the assumption of particles acting at a distance with forces which depend on their velocities are such as to prevent we from considering this [Weber’s] theory as an ultimate one. …”. (quoted after Magie (1935), p. 529).

    Google Scholar 

  35. Machsches Prinzip: Das G-Feld [gµv-field, M.S.] ist restlos durch die Massen der Körper bestimmt. Da Masse und Energie nach den Ergebnissen der Speziellen Relativitätstheorie das gleiche sind und die Energie formal durch den symmetrischen Encrgietcnsor (T µv) beschrieben wird, so besagt dies, daß das G-Feld durch den Energietensor der Materie bedingt und bestimmt sei. (Einstein, 1918 ).

    Google Scholar 

  36. Hönl (1966a, b).

    Google Scholar 

  37. Even in his 1918 paper, quoted in Ref. 35, Einstein calls his ‘Mach Principle’ a generalization of “die Machsche Forderung, daß die Trägheit auf eine Wechselwirkung der Körper zurückgeführt werden müsse”.

    Google Scholar 

  38. For a somewhat fuller discussion of this point cf. Strauss (1967a).

    Google Scholar 

  39. For the genesis of Planck’s quantum theory cf. Strauss (1960).

    Google Scholar 

  40. Einstein (1916a) thought that the postulate of general covariance “dem Raum und der Zeit den letzten Rest physikalischer Gegenständlichkeit nehmen würde” and that only ‘coincidences’, i.e., the points of intersection of world lines, would remain as objective facts.

    Google Scholar 

References

  1. Cf. ref. 4 Part I.

    Google Scholar 

  2. In fact, any PI different from the standard one would give a different physical theory. See also ref. 4.

    Google Scholar 

  3. Cf. ref. 8, Part I.

    Google Scholar 

  4. Many interpretations, offered as mere reconceptualizations, are in fact non-standard PIs. A typical example is Bohm’s ‘causal interpretation’. In spite of this author’s contention to the contrary, his ‘interpretation’ gives entirely different results. For instance, it predicts that a hydrogen atom has a magnetic moment even in the ground state, in contradiction to the standard PI.

    Google Scholar 

  5. This relation can be established in infinitely many ways, each one characterized by a phase factor exp (ia) common to all state vectors. This fact is often described by saying that the state vector is only defined ‘up to an arbitrary phase factor’. This is utterly misleading as it suggests a one-many relation between states and state vectors.

    Google Scholar 

  6. We omit the normalizing factor (Tr P1)-1.

    Google Scholar 

  7. The set theoretical distinction between cardinal numbers is the coarsest one possible. If we omit one |>k from a complete set {|>i} the resulting set {|>i}ik has the same set theoretical cardinal number as the complete set though it is no longer complete. Thus, in HS we can distinguish between co (meaning the cardinal number of a complete set) and ∞ − 1.

    Google Scholar 

  8. For detailed discussion and proofs cf. J.-M. Lévy-Leblond, ‘Galilei Group and Nonrelativistic Quantum Mechanics’, J. Math. Phys. 4 (1963) 776–88.

    Article  Google Scholar 

  9. A great deal of confusion has been generated by the use of statistical terms for which the referent, i.e. the ensemble, is not specified. Thus, the expression (a) \(\bar A\mathop = \limits_{df} \left\langle {\left| A \right|} \right\rangle = Tr{P_{\left. | \right\rangle }}A = {\sum {\left| {{{\left\langle | \right\rangle }_i}} \right|} ^2}{a_i}\) is usually spoken of as ‘mean value’ or — worse still — as ‘expectation value’ of A for (or in) the state. This is nonsense if taken verbally since neither a mean value nor an expectation value is defined for a single system; it is wrong if the ensemble to which the mean value refers is taken to be the uniform ensemble (‘pure case’) of systems all in state: in this ensemble A has no mean value at all since none of the ensemble members is in a state where A has any definite value. In fact, the expression (a) is the mean value of (the eigenvalues of) A in the nonuniform ensemble (‘mixture’) in which the eigenstate of A occurs with the relative frequency (b) \({h_i} = {\left| {{{\left\langle | \right\rangle }_i}} \right|^2} = pro{b_2}\mathop {\left( {\left| {\rangle \to \left| {{\rangle _i}} \right.} \right.} \right)}\limits^A \) To call expression (a) the ‘expectation value of A’ for a ‘measurement’ of A is also wrong since in general the value of expression (a) will be different from any eigenvalue of A and hence the ‘expectation’ of finding value (a) by a ‘measurement’ of A will be exactly zero!

    Google Scholar 

  10. Cf. E. Schrödinger, Statistical Thermodynamics, Cambridge 1946.

    Google Scholar 

  11. Cf. M. Strauss, ‘Entwicklungsgesetze and Perspectiven der Physik’, Monatsber. Dtsch. Akad. bliss. Berlin 9 (1967) 538–47.

    Google Scholar 

Download references

Authors

Editor information

Paul Weingartner Gerhard Zecha

Rights and permissions

Reprints and permissions

Copyright information

© 1970 D. Reidel Publishing Company, Dordrecht-Holland

About this chapter

Cite this chapter

Strauss, M. (1970). Intertheory Relations. In: Weingartner, P., Zecha, G. (eds) Induction, Physics and Ethics. Synthese Library, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-3305-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-3305-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3307-7

  • Online ISBN: 978-94-010-3305-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics