Skip to main content

Measurement of transpiration and leaf conductance

  • Chapter
Plant Physiological Ecology

Abstract

Measurements of leaf transpiration and calculations of leaf conductance to water vapor are important in almost all investigations of plant water relations. Transpiration is a primary determinant of leaf energy balance (Chapter 7) and plant water status (Chapter 9). Together with the exchange of CO2 it determines the water use efficiency. The close linkage between CO2 uptake and H2O via the stomatal pore has allowed for separation of stomatal and biochemical limitations to photosynthesis through calculation of intercellular CO2 concentrations. In this chapter we will cover the principles and instruments necessary for measurement of leaf transpiration and the calculation of leaf conductances to water vapor exchange. We will also consider the methodology and problems involved in determining whole-plant and canopy transpiration rates. Emphasis is placed on methods and equipment that have as their primary purpose, the direct measurement of transpiration rates or leaf conductance to water vapor loss. It should be noted that in many research problems, knowledge of both CO2 and H2O exchange are required. In the past, porometers that measure only leaf conductance to water vapor have sometimes been used to infer more general environmental response of gas exchange including CO2 uptake. While a general correlation is expected, direct measurements of CO2 exchange, which are much more feasible than even a few years ago, are clearly more appropriate. Field equipment designed for simultaneous measurements is covered primarily in Chapter 11. In this chapter we will, however, cover the water vapor sensors and the theory and procedures necessary to measure transpiration and calculate stomatal conductances in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beardsell, M.F., Jarvis, P.G. and Davidson, B. (1972) A null-balance diffusion porometer suitable for use with leaves of many shapes. J. Appl. Ecol, 9, 677–90.

    Article  Google Scholar 

  • Bingham, G.E., Coyne, P.I., Kennedy, R.B. and Jackson, W.L. (1980) Design and fabrication of a portable minicuvette system for measuring leaf photosynthesis and stomatal conductance under controlled conditions. Lawrence Livermore Laboratory, Livermore CA Publication no. UCRL-52895.

    Google Scholar 

  • Bloom, A.J., Mooney, H.A., Björkman, O. and Berry, J. (1980) Materials and methods for carbon dioxide and water vapor exchange analysis. Plant Cell Environ, 3, 371–6.

    Article  CAS  Google Scholar 

  • Byrne, G.F., Rose, C.W. and Slatyer, R.O. (1970) An aspirated diffusion porometer suitable for use with leaves of many shapes. J. Appl. Ecol, 9, 39–44.

    Google Scholar 

  • Caemmerer, S., von and Farquhar, G.D. (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376–87.

    Google Scholar 

  • Caldwell, M.M., Meister, H. -P., Tenhunen, J.D. and Lange, O.L. (1986) Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: measurements in different canopy layers and simulations with a canopy model. Trees, 1, 25–41.

    Article  Google Scholar 

  • Campbell, G.S. (1975) Steady state diffusion porometers. Measurements of stomatal aperture and diffusive resistance. Washington State University Agriculture Research Center bulletin 809, Pullman, WA pp. 20–3.

    Google Scholar 

  • Campbell, G.S. (1977) An Introduction to Environmental Biophysics, Springer-Verlag, New York, Heidelberg and Berlin.

    Google Scholar 

  • Cermâk, J., Deml, M. and Penka, M. (1973) A new method of sap flow rate determination in trees. Biol. Plant, 15, 171–78.

    Article  Google Scholar 

  • Cermâk, J., Jenik, J., Kucera, J. and Zidek, V. (1984) Xylem sap flow in a crack willow tree (Salix fragilis) in relation to diurnal changes of the environment. Decologia, 64, 223–9.

    Google Scholar 

  • Cermâk, J. and Kucera, J. (1981) The compensation of natural temperature gradients at the measuring point during the sap flow rate determination in trees. Biol. Plant, 23, 469–71.

    Article  Google Scholar 

  • Cowan, I.R. (1977) Stomatal behaviour and environment. Adv. Bot. Res, 4, 117–227.

    Article  Google Scholar 

  • Day, W. (1977) A direct reading continuous flow porometer. Agric. Meteorol, 18, 81–9.

    Article  Google Scholar 

  • Dixon, M. and Grace, J. (1982) Water uptake by some chamber materials. Plant, Cell Environ, 5 323–7.

    Google Scholar 

  • Fritschen, L.J., Cox, L. and Kinerson, R. (1973) A 28-meter Douglas fir in a weighing lysimeter. For. Sci, 19, 256–61.

    Google Scholar 

  • Fuller, E.N., Schettler, P.D. and Geddings, J.C. (1966) A new method for the prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem, 58, 19–27.

    Google Scholar 

  • Granier, A. (1985) Une nouvelle methode pour la mesure du flux seve brute dans le tronc des arbres. Ann. Sci. For, 42, 193–200.

    Article  Google Scholar 

  • Granier, A. (1987) Mesure du flux de seve brute dans le tronc du Douglas par une nouvelle methode thermique. Ann. Sci. For, 44, 1–14.

    Article  Google Scholar 

  • Hall, A.E. (1982) Mathematical models of plant water loss and plant water relations. In Encyclopedia of Plant Physiology, new series, Vol. 12b, Physiological Plant Ecology (eds O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler ), Springer-Verlag, Heidelberg, Berlin and New York, pp. 231–60.

    Google Scholar 

  • Huber, B. and Schmidt, E. (1937) Eine Kompensationsmethode zur thermoelektirschen Messung langsamer Saftstrome. Ber. Dtsch. Bot. Ges, 55, 512–29.

    Google Scholar 

  • Jarman, P.D. (1974) The diffusion of carbon dioxide and water through stomata. J. Exp. Bot, 25, 927–36.

    Article  Google Scholar 

  • Jarvis, P.G. (1985) Transpiration and assimilation of tree and agricultural crops: the ‘omega factor’. In Attributes of Trees as Crop Plants (eds M.G.R. Cannell and J.E. Jackson ), Institute of Terrestrial Ecology, pp. 460–80.

    Google Scholar 

  • Jarvis, P.G. and Catsky, J. (1971) Chamber micro-climate and principles of assimilation chamber design. In Plant Photosynthetic Production. Manual of Methods (eds Z. Sestak, J. Catsky and P.G. Jarvis ), W. Junk, The Hague, pp. 59–77.

    Google Scholar 

  • Jones, H.G. (1983) Plants and Microclimate, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kanemasu, E.T., Thurtell, G.W. and Tanner, C.B. (1969) Design, calibration and field use of a stomatal diffusion porometer. Plant Physiol, 44, 881–5.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, M.R. and Eckard, A.N. (1978) A portable instrument for rapidly measuring conductance and transpiration of conifers and other species. For. Sci, 23, 227–37.

    Google Scholar 

  • Körner, C. and Cernusca, A. (1976) A semiautomatic, recording diffusion porometer and its performance under alpine field conditions. Photosynthetica, 10, 172–81.

    Google Scholar 

  • Köppers, M. and Schulze, E.-D. (1985) An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO2 and H2O exchange. Austr. J. Plant Physiol, 12, 512–26.

    Google Scholar 

  • Morrow, P.A. and Slatyer, R.O. (1971) Leaf temperature effects on measurements of diffusive resistance to water vapor transfer. Plant Physiol, 47, 559–61.

    Article  PubMed  CAS  Google Scholar 

  • Mott, K.A. and O’Leary, J.W. (1984) Stomatal behavior and CO2 exchange characteristics in amphistomatous leaves. Plant Physiol, 74, 4751.

    Article  Google Scholar 

  • Nobel, P.S. (1984) Biophysical Plant Physiology and Ecology, W.H. Freeman, San Francisco.

    Google Scholar 

  • Parkinson, K.J. and Day, W. (1981) Water vapor calibration using salt hydrate transitions. J. Exp. Bot, 32, 411–18.

    Article  CAS  Google Scholar 

  • Parkinson, K.J. and Legg, B.J. (1972) A continuous flow porometer. J. Appl. Ecol, 9, 669–75.

    Article  Google Scholar 

  • Penka, M., Cermâk, J., Stepanek, V. and Palat, M. (1979) Diurnal courses of transpiration rate and transpiration flow rate as determined by the gravimetric and thermometric methods in a full-grown oak tree (Quercus robur). Acta Universitatis Agric. (Brno) Ser. C, 48, 3–30.

    Google Scholar 

  • Sakuratani, T. (1981) A heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol, 37, 9–17.

    Article  Google Scholar 

  • Salasmaa, E. and Kostamo, P. (1975) New thin film humidity sensor. In Third Symposium on Meteorological Observations and Instrumentation, American Meteorological Society, Boston, pp. 23–8.

    Google Scholar 

  • Salasmaa, E. and Kostamo, P. (1986) HUMICAP thin film humidity sensor. In Advanced Agricultural Instrumentation Design and Use (ed. W. Gensler ), Martinus Nijhoff, Dordrecht, pp. 135–48.

    Google Scholar 

  • Schulze, E.-D., Cermâk, J., Matyssek, R., Penka, M., Zimmermann, R., Vasicek, F., Gries, W. and Kucera, J. (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia, 66, 475–83.

    Article  Google Scholar 

  • Schulze, E.-D. and Fichtner, K. (1988) Xylem water flow of tropical lianas. Oecologia.

    Google Scholar 

  • Schulze, E.-D., Hall, A.E., Lange, O.L. and Walz, H. (1982) A portable steady-state porometer for measuring the carbon dioxide and water vapor exchanges of leaves under natural conditions. Oecologia, 53, 141–5.

    Article  Google Scholar 

  • Schurer, K. (1986) Water and plants. In Advanced Agricultural Instrumentation Design and Use (ed. W. Gensler ), Martinus Nijhoff, Dordrecht, pp. 429–56.

    Google Scholar 

  • Sharkey, T.D., Imai, K., Farquhar, G.D. and Cowan, I.R. (1982) A direct confirmation of the standard method of estimating intercellular partial pressure of CO2. Plant Physiol, 69, 65–79.

    Google Scholar 

  • Slatyer, R.O. and Bierhuizen, J.F. (1964) A differential psychrometer for continuous measurements of transpiration. Plant Physiol, 39, 105–16.

    Article  Google Scholar 

  • Stiles, W. Montieth, J.L. and Bull, T.A. (1970) A diffusive resistance porometer for field use. J. Appl. Ecol, 7, 617–38.

    Article  Google Scholar 

  • Thorpe, M.R., Warrit, B. and Landsberg, J.J. (1980) Responses of apple leaf stomata: a model for single leaves and a whole tree. Plant, Cell Environ, 3, 23–7.

    Google Scholar 

  • Turner, N.C. and Parlange, J.-Y. (1970) Analysis of operation and calibration of a ventilated diffusion porometer. Plant Physiol, 46, 175–7.

    Article  PubMed  CAS  Google Scholar 

  • van Bavel, C.H.M. and Meyers, L.E. (1962) An automatic weighing lysimeter. Agric. Eng, 43, 580–8.

    Google Scholar 

  • Vieweg, G.H. and Ziegler, H. (1960) Thermoelektrische Registrierung der Geschwindigkeit des Transpirationsstromes. Ber. Dtsch. Bot. Ges, 73, 221–6.

    Google Scholar 

  • Wallihan, E.F. (1964) Modification and use of an electric hygrometer for estimating relative stomatal apertures. Plant Physiol, 39, 86–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pearcy, R.W., Schulze, ED., Zimmermann, R. (2000). Measurement of transpiration and leaf conductance. In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W. (eds) Plant Physiological Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9013-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9013-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-40730-7

  • Online ISBN: 978-94-010-9013-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics