Skip to main content

Evidence for Quantum Tunneling of the Magnetization in Mn12A C

  • Chapter
Quantum Tunneling of Magnetization — QTM ’94

Part of the book series: NATO ASI Series ((NSSE,volume 301))

Abstract

We have measured the relaxation of the magnetization of single crystals of a Mn12 acetate complex (Mn12Ac). We were able to study the evolution of the relaxation as a function of field and temperature. For a given field and temperature, the relaxation of the bulk of the sample can be described by a single exponential relaxation time, τ. The relaxation time is observed to deviate from thermal activation at approximately 1.8 K when H = 0 tesla. Below this crossover temperature, τ tends to saturate at values of around 108 seconds. We believe that the low temperature relaxation arises from Magnetic Quantum Tunneling. We also present the hysteresis properties of Mn12Ac measured at low temperatures. The properties differ from those of ferromagnetic materials. They are not due to arrangements of magnetic domains, but to a self-induced magnetization reversal, the socalled avalanche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example Leggett, A.J. Chakravarty, C. Dorsey, A.T. , Fisher, M.P.A. ,Garg, A. , Zwerger, W.(1987) Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59 1–84

    Article  ADS  Google Scholar 

  2. For an excellent introduction to Quantum Tunneling of the Magnetization see Gunther ,L. (1990) Quantum tunnelling of the magnetisation, Phys. Wld. 3 28–34. For a recent review see

    Google Scholar 

  3. Stamp, P.C.E., Chudnovsky, E.M. and Barbara, B. (1992) Quantum Tunneling of the Magnetization in Solids, Int. J. Mod. Phys. B 6 1355–1473.

    Article  ADS  Google Scholar 

  4. Chudnovsky, E.M. and Gunther,L (1988) Quantum Tunneling of Magnetization in Small Ferromagnetic Particles, Phys. Rev. Lett. 60 661–664.

    Article  MathSciNet  ADS  Google Scholar 

  5. Barbara, B., and Chudnovsky, E.M., (1990) Macroscopic Quantum Tunneling in Antiferromagnets, Phys. Lett. A 145205–208.

    Article  ADS  Google Scholar 

  6. Stamp, P.C.E. (1991) Quantum Dynamics and Tunneling of Domain Walls in Feromagnetic Insulators, Phys. Rev. Lett. 66 2802–2805.

    Article  ADS  Google Scholar 

  7. Calderia, A. O. and Leggett, A. J. (1981) Influence of Dissipation on Quantum Tunneling in Macroscopic Systems, Phys. Rev. Lett. 46 211–214.

    Article  ADS  Google Scholar 

  8. See for example Riehenmann, W. and Nembach, E. (1984) Tunneling of domain walls in ferromagnetic materials, J. Appl. Phys. 55 1081-1091;

    Google Scholar 

  9. C. Paulsen, Sampaio,L.C., Barbara, B., Tucoulou-Tachoueres, R., Fruchard, D., Marchand, A., Tholence, J.L., Uehara, M. (1992) Macroscopic quantum tunneling of Bloch walls in small ferromagnetic particles, Europhys. Lett. 19 643–648;

    Article  ADS  Google Scholar 

  10. Tejarda, J., Zhang, X.X., and Chudnovsky, E.M. (1993) Quantum Tunneling in random magnets, Phys. Rev. B 47 14997–14986.

    ADS  Google Scholar 

  11. Awschalom, D.D., McCord, M.A., and Grinstein, G. (1990) Oberservation of Macroscopic Spin Phenomena in Nanometer-scale Magnets, Phys. Rev. Lett. 65 783–787.

    Article  ADS  Google Scholar 

  12. Garg, A. (1995) Suppression of Macroscopic Quantum Coherence in Magnetic Particles By Nuclear Spins, Phys. Rev. Lett. 74 1458–1461.

    Article  ADS  Google Scholar 

  13. Sampaio, L.C., Paulsen, C. and Barbara, B. (1995) Effects of the Distribution of Energy Barriers on the Magnetic Relaxation of Ba-Ferrite Small Particles at low Temperature, to be published in J. Magn. Magn. Mater. 140–144 (1995),

    Google Scholar 

  14. Sampaio, L.C. (1994) Etude de la relaxation de l’aimantation de petites perticules et couche minces a basse temperatures, Ph.D. Thesis, Université Joseph Fourier, Grenoble, France

    Google Scholar 

  15. Street, R. and Wollley, J. C. (1949)Proc. Phys. Soc. A 62 562

    Article  ADS  Google Scholar 

  16. For a recent review see Miller, J.S. and Epstein, A.J. (1994) Organic and Organometallic Molecular Magnetic Materials-Designer Magnets, Angew. Chem. Int. Ed. Engl 33 385–415.

    Article  Google Scholar 

  17. Paulsen, C, Park, J.-G., Barbara, B., Sessoli, R., Caneschi, A. (1995) Novel Features in the Relaxation times of Mnl2Ac, to be published in J. Magn. Magn. Mater. 140–144

    Google Scholar 

  18. Paulsen, C, Park, J.-G., Barbara, B., Sessoli, R., Caneschi, A. (1995) Studies of hysteresis in Mn12Ac, to be published in J. Magn. Magn. Mater. 140–144

    Google Scholar 

  19. Lis, T. (1980) Preparation, Structure, and Magnetic Properties of a Dodecanuclear Mixed-Valence Manganese Carboxylate, Acta Cryst. B 36 2042–2046.

    Article  Google Scholar 

  20. Novak,M.A. and Sessoli, R. (1995) AC Susceptibility Relaxation Studies on a Organometalic Cluster Compound: Mnl2Ac, these proceedings.

    Google Scholar 

  21. Caneschi, A., Gatteschi, G., Sessoli, R., Barra, A.L., Brunei, L.C., and Gouillot, M. (1991) Alternating Current Susceptibility, High Field Magnetization, and Millimeter Band EPR Evidence for a Ground S=10 State in Mnl2Ac, J. Am. Chem Soc. 113 5873–5874.

    Article  Google Scholar 

  22. Caneschi, A., Gatteschi, D., Sessoli, R. and Novak, M.A. (1993) Magnetic bistability in a metal-ion cluster, Nature 365 141–143.

    Article  ADS  Google Scholar 

  23. Sessoli, R. private communications.

    Google Scholar 

  24. Lionti, F. and Novak, M. private communications.

    Google Scholar 

  25. van Hemmen, J.L. and Sutö, S. (1986) Tunneling of Quantum Spins, Physica 141B 37–75.

    Google Scholar 

  26. Villain, J., Hartmann-Boutron, F., Sessoli, R. and Rettori, A. (1994) Magnetic Relaxation in Big Magnetic Molecules, Europhys. Lett. 27 159–164.

    Article  ADS  Google Scholar 

  27. Politi, P., Rettori, A., Villain, J., and Hartmann-Boutron, F. (1994) Tunneling in Mesoscopic Magnetic Molecules, submitted to Phys. Rev. Lett.

    Google Scholar 

  28. Novak, M.A., Sessoli, R., Caneschi, A., Gatteschi, D. (1995) Magnetic Properties of a Mn Cluster Organic Compound, to be published in J. Magn. Magn. Mater. 145.

    Google Scholar 

  29. Bak, P. and Paczuski, M. (1993) Why Nature is Complex Physics World 6–12, 39–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paulsen, C., Park, JG. (1995). Evidence for Quantum Tunneling of the Magnetization in Mn12A C. In: Gunther, L., Barbara, B. (eds) Quantum Tunneling of Magnetization — QTM ’94. NATO ASI Series, vol 301. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0403-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0403-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4180-5

  • Online ISBN: 978-94-011-0403-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics