Skip to main content

Response of bubbles to ultrasonic radiation pressure: Dynamics in low gravity and shape oscillations

  • Conference paper
Bubble Dynamics and Interface Phenomena

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 23))

Abstract

A dual-frequency acoustic levitator containing water was developed for studying bubble and drop dynamics in low gravity. It was flown on the Space Shuttle on USML-1 where it was used in NASA’s Glovebox facility. High frequency (21 or 63 kHz) ultrasonic waves were modulated by low frequencies to excite shape oscillations on bubbles and oil drops ultrasonically trapped in the water. Bubble diameters were typically close to 1 cm or larger. When such large bubbles are acoustically trapped on the earth, the acoustic radiation pressure needed to overcome buoyancy tends to shift the natural frequency for quadrupole (n = 2) oscillations above the prediction of Lamb’s equation. In low gravity, a much weaker trapping force was used and measurements of n = 2 and 3 mode frequencies were closer to the ideal case. Other video observations in low gravity include: (i) the transient reappearance of a bulge where a small bubble has coalesced with a large one, (ii) observations of the dynamics of bubbles coated by oil indicating that shape oscillations can shift a coated bubble away from the oil-water interface of the coating giving a centering of the core, and (iii) the agglomeration of bubbles induced by the sound field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. G. Blake, J. Acoust. Soc. Am. 21, 551 (1949).

    Article  ADS  Google Scholar 

  2. A. I. Eller, J. Acoust. Soc. Am. 43, 170 (1968).

    Article  ADS  Google Scholar 

  3. R. G. Holt and L. A. Crum, J. Acoust. Soc. Am. 91, 1924 (1992).

    Article  ADS  Google Scholar 

  4. H. Lamb, Hydrodynamics (Dover, New York, 1945).

    Google Scholar 

  5. P. L. Marston, J. Acoust. Soc. Am. 67, 15 (1980); erratum, 71, 511 (1982).

    Article  ADS  MATH  Google Scholar 

  6. P. L. Marston, S. E. LoPorto, and G. L. Pullen, J. Acoust. Soc. Am. 69, 1499 (1981).

    Article  ADS  Google Scholar 

  7. P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280 (1979).

    Article  Google Scholar 

  8. P. L. Marston and R. E. Apfel,J. Acoust. Soc. Am. 67, 27 (1980).

    Article  ADS  Google Scholar 

  9. T. J. Asaki, P. L. Marston, and E. H. Trinh, J. Acoust. Soc. Am. 93, 706 (1993).

    Article  ADS  Google Scholar 

  10. C. A. Miller and L. E. Scriven, J. Fluid Mech. 32, 417 (1968).

    Article  ADS  MATH  Google Scholar 

  11. L. A. Crum, J. Acoust. Soc. Am. 57, 1363 (1975).

    Article  ADS  Google Scholar 

  12. A. Prosperetti, Appl. Sci. Res. 38, 145 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. S. Longuet-Higgins, J. Fluid Mech. 201, 543 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. M. C. Lee, I. Feng, D. D. Elleman, T. G. Wang, and A. T. Young, J. Vac. Sci. Technol. 20, 1123 (1982).

    Article  ADS  Google Scholar 

  15. N. A. Pelekasis, J. A. Tsamopoulos, and G. D. Manolis, J. Fluid Mech. 230, 541 (1991).

    Article  ADS  MATH  Google Scholar 

  16. C. P. Lee and T. G. Wang, J. Acoust. Soc. Am. 93, 1637 (1993).

    Article  ADS  Google Scholar 

  17. E. H. Trinh, P. L. Marston, and J. L. Robey, J. Colloid Interface Sci. 124, 95 (1988).

    Article  ADS  Google Scholar 

  18. E. Trinh and T. G. Wang, J. Fluid Mech. 122, 315 (1982).

    Article  ADS  Google Scholar 

  19. P. L. Marston and S. G. Goosby, Phys. Fluids 28, 1233 (1985).

    Article  ADS  Google Scholar 

  20. T. J. Asaki, P. L. Marston, and E. H. Trinh, in Advances in Nonlinear Acoustics, edited by H. Hobaek (World Scientific, Singapore, 1993), pp. 424–429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Marston, P.L., Trinh, E.H., Depew, J., Asaki, T.J. (1994). Response of bubbles to ultrasonic radiation pressure: Dynamics in low gravity and shape oscillations. In: Blake, J.R., Boulton-Stone, J.M., Thomas, N.H. (eds) Bubble Dynamics and Interface Phenomena. Fluid Mechanics and Its Applications, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0938-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0938-3_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4404-2

  • Online ISBN: 978-94-011-0938-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics