Skip to main content

The Immunology and Pathogenesis of Persistent Virus Infections

  • Chapter
Immunology of Infection

Part of the book series: Immunology and Medicine Series ((IMME,volume 25))

  • 89 Accesses

Abstract

Infection by a virus usually initiates an immune response to the virus, as a result of which the infection is cleared. Viruses have, therefore, evolved ways of evading immune recognition which allow them to persist in individuals or, if clearance with lifelong protection is the outcome of initial contact with the host, to maintain themselves within the population. Examples of such mechanisms include infection in early childhood, as new susceptible hosts appear every 2–3 years (e.g. measles virus); the availability of a secondary host (often an animal reservoir, e.g. influenza virus)1,2; and modification of viral coat proteins by antigenic shift and drift (e.g. influenza virus haemagglutinin)1. It is also possible for a virus to persist in cells or animals of a species other than the natural host2. Although this may be an artificial phenomenon it provides important clues as to the nature of persistence in the intact host. Lastly, viruses may become persistent in a single host. The maintenance of such persistence requires a complex series of interactions between host and virus to be established and maintained to provide an asymptomatic virus–host equilibrium. This latter mechanism is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiley DC, Skehel JJ. The structure and function of the haemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987; 56: 365–394.

    Article  PubMed  CAS  Google Scholar 

  2. Krug RM. The influenza viruses. New York, London: Plenum Press, 1989.

    Book  Google Scholar 

  3. Yao QY, Rickinson AB, Gaston JSH, Epstein MA. In vitro analysis of the Epstein Barr virus host balance in long term renal allograft recipients. Int J Cancer. 1985; 35: 43–54.

    Article  PubMed  CAS  Google Scholar 

  4. Koike S, Taya C, Kurata T, Abe S, Ise I, Yonekawa H, Nomoto A. Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci USA. 1991; 88: 951–955.

    Article  PubMed  CAS  Google Scholar 

  5. Evans DMA, Dunn G, Minor PD, Schild GC, Cann AJ, Stanaway G, Almond JW, Currey K, Maizel JW. Increased neurovirulence associated with a single nucleotide change in a non-coding region of the Sabin type 3 poliovaccine genome. Nature. 1985; 314: 548–550.

    Article  PubMed  CAS  Google Scholar 

  6. Vallbracht A, Maier K, Stierhof YD, Wiedmann KH, Fiehmig B, Fleischer B. Liver derived cytotoxic T cells in hepatitis A virus infection. J Infect Dis. 1989; 160: 209–217.

    Article  PubMed  CAS  Google Scholar 

  7. Cunningham L, Bowles NE, Lane RJM, Dubowitz V, Archard LC. Persistence of enterovirus RNA in chronic fatigue syndrome is associated with the abnormal production of equal amounts of positive and negative strands of enteroviral RNA. J Gen Virol. 1990; 71: 1399–1402.

    Article  PubMed  Google Scholar 

  8. Archard L, Bowles NE, Cunningham L, Frecke CA, Olsen EGJ, Rose ML, Mearly B, Why HJF, Richardson PJ. Molecular probe for the detection of persisting enterovirus infection of human heart and their prognostic value. Eur Heart J. 1991; 12D: 56–59.

    PubMed  Google Scholar 

  9. Roizman B, Sears AE. Herpes simplex viruses and their replication. In: Fields BN, Knipe DM, eds. Virology. New York: Raven Press, 1990: 1795–1841.

    Google Scholar 

  10. Ho DY, Mocarski ES. HSV latent RNA (LAT) is not required for latent infection in the mouse. Proc Natl Acad Sci USA. 1989; 86: 7596–7600.

    Article  PubMed  CAS  Google Scholar 

  11. Sample C, Kieff E. Molecular basis for Epstein-Barr virus induced pathogenesis and disease. Semin Immunopathol. 1991; 13: 133–146.

    CAS  Google Scholar 

  12. Alfieri C, Birkenbach M, Kieff E. Early events in Epstein-Barr virus infection of human B lymphocytes. Virology. 1991; 181: 595–610.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor-Weidemann J, Sissons JGP, Borysiewicz LK, Sinclair JH. Monocytes as a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991; 72: 2059–2064.

    Article  Google Scholar 

  14. Shelbourn SL, Sissons JGP, Sinclair JH. Expression of oncogenic ras in human teratocarcinoma cells induces partial differentiation and permissiveness for human cytomegalovirus infection. J Gen Virol. 1989; 70: 367–374.

    Article  PubMed  CAS  Google Scholar 

  15. Shelbourn SL, Kothari SK, Sissons JGP, Sinclair JH. Repression of human cytomegalovirus gene expression associated with a novel immediate-early regulatory region binding factor. Nucleic Acids Res. 1989; 17: 9165–9171.

    Article  PubMed  CAS  Google Scholar 

  16. Stamminger T, Felkenstein B. Curr Topics Microbiol Immunol. 1990; 154: 3–19.

    Article  CAS  Google Scholar 

  17. Chisari FV. Hepatitis B virus biology and pathogenesis. Mol Genet Med. 1991; 2: 67–104.

    Google Scholar 

  18. Robinson WS. The role of hepatitis B virus in the development of primary hepatocellular carcinoma. Part I. J Gastroenterol Hepatol. 1993; 7: 622–638.

    Article  Google Scholar 

  19. Robinson WS. The role of hepatitis B virus in the development of primary hepatocellular carcinoma. Part II. J Gastroenterol Hepatol. 1993; 8: 95–106.

    Article  PubMed  CAS  Google Scholar 

  20. Walker SM, Hagemeier C, Sissons JGP, Sinclair JH. Transregulation of the HIV long terminal repeat by HCMV involves the HIV TATA box region. J Virol. 1991.

    Google Scholar 

  21. Bukowski JF, Warner JF, Dennert G, Welsh RM. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med. 1985; 161: 40–52.

    Article  PubMed  CAS  Google Scholar 

  22. Borysiewicz LK, Graham S, Sissons JGP. Human NK lysis of virus infected cells–relationship to expression of the transferrin receptor. Eur J Immunol. 1986; 16: 405–411.

    Article  PubMed  CAS  Google Scholar 

  23. Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR. CMV-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med. 1990; 171: 1469–1483.

    Article  PubMed  CAS  Google Scholar 

  24. Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989; 320: 1731–1735.

    Article  PubMed  CAS  Google Scholar 

  25. Swoveland PT. Molecular events in measles virus infection of the central nervous system. Int Res Exp Pathol. 1991; 32: 255–275.

    CAS  Google Scholar 

  26. McGuire TC, O’Rourke KI, Parrymen LE Immunopathogenesis of equine infectious anaemia lentivirus disease. Dev Biol Stand. 1990; 72: 31–37.

    PubMed  CAS  Google Scholar 

  27. Nara PL, Garrity RR, Goldsmit J. Neutralization of HIV-1: a paradox of humoral proportions. FASEB J. 1991; 5: 2437–2458.

    PubMed  CAS  Google Scholar 

  28. Nowak M. HIV mutation rate. Nature. 1990; 347: 552.

    Article  Google Scholar 

  29. Nash AA. Different roles for the L3T4+ and Lyt2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and central nervous system. J Gen Virol. 1987; 68: 825–833.

    Article  PubMed  Google Scholar 

  30. Mester JC, Rouse BT. The mouse model and understanding immunity to herpes simplex virus. Rev Infect Dis. 1991; 13 (Suppl. 11): S935–945.

    Article  PubMed  Google Scholar 

  31. Koszinowski UH, Del Val M, Reddehase MJ. Cellular and molecular basis of the protective immune response to cytomegalovirus infection. Curr Topics Microbiol Immunol. 1990; 154: 189–220.

    Article  CAS  Google Scholar 

  32. Reddehase MJ, Weiland F, Muench K, Jonjic S, Lueske A, Koszinowski UH. Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol. 1985; 55: 264–273.

    PubMed  CAS  Google Scholar 

  33. Reddehase MJ, Mutter W, Muench K, Buhring HJ, Koszinowski UH. CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol. 1987; 61: 3102–3108.

    PubMed  CAS  Google Scholar 

  34. Borysiewicz LK, Graham S, Hickling JK, Mason PD, Sissons JGP. Human cytomegalovirusspecific cytotoxic T cells: their precursor frequency and stage specificity. Eur J Immunol. 1988; 18: 269–275.

    Article  PubMed  CAS  Google Scholar 

  35. Borysiewicz LK, Hickling JK, Graham S, Sinclair J, Cranage MP, Smith GL, Sissons JGP. Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate-early protein and glycoprotein B expressed by recombinant vaccinia viruses. J Exp Med. 1988; 168: 919–931.

    Article  PubMed  CAS  Google Scholar 

  36. Riddell SR. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992; 257: 238–241.

    Article  PubMed  CAS  Google Scholar 

  37. Purtillo DT. X-linked immunoproliferative disease (XLP) as a model of Epstein-Barr virus-induced immunopathology. Semin Immunopathol. 1991; 13: 181–197.

    Google Scholar 

  38. Moss DJ, Misko IS, Scully TB, Apolloni A, Khanna R, Burrows SR. Immune regulation of Epstein-Barr virus: EBV nuclear antigen as a target for EBV-specific T cell lysis. Semin Immunopathol. 1991; 13: 147–156.

    CAS  Google Scholar 

  39. Rickinson AB, Moss DJ, Allen DJ, Wallace LE, Rowe M, Epstein MA. Reactivation of Epstein-Barr virus-specific cytotoxic cells by in vitro stimulation with the autologous lymphoblastoid cell line. Int J Cancer. 1981; 27: 593–601.

    Article  PubMed  CAS  Google Scholar 

  40. Alp NJ, Borysiewicz LK, Sissons JGP. Automation of limiting dilution cytotoxicity assays. J Immunol Methods. 1990; 129: 269–276.

    Article  PubMed  CAS  Google Scholar 

  41. McMichael AJ, Gotch FM, Noble GR, Beare PA. Cytotoxic T-cell immunity to influenza N Engl J Med. 1983; 309: 13–17.

    Article  PubMed  CAS  Google Scholar 

  42. Lau LI, Jamieson BD, Somasundaram T, Ahmed R. Cytotoxic T-cell memory without antigen. Nature. 1994; 369: 648–652.

    Article  PubMed  CAS  Google Scholar 

  43. Strang G, Rickinson AB. Multiple HLA class I-dependent cytotoxicities constitute the “non-HLA-restricted” response in infectious mononucleosis. Eur J Immunol. 1987; 17: 1007–1112.

    Article  PubMed  CAS  Google Scholar 

  44. Tomkinson BE, Maziarz R, Sullivan JL. Characterization of the T cell-mediated cellular cytotoxicity during acute infectious mononucleosis. J Immunol. 1989; 143: 660–670.

    PubMed  CAS  Google Scholar 

  45. Gotch FM, Nixon DF, Alp NJ, McMichael Ai, Borysiewicz LK. High frequency of memory and effector gag specific cytotoxic T lymphocytes in HIV seropositive individuals. Int Immunol. 1990; 2: 707–712.

    Article  PubMed  CAS  Google Scholar 

  46. Phillips RE, Rowland-Jones S, Nixon DF et al. HIV genetic variation that can escape cytotoxic T cell recognition. Nature. 1991; 354: 453–459.

    Article  PubMed  CAS  Google Scholar 

  47. Lehamnn-Grube F, Tijerina R, Zeller W, Chaturvedi UC, Lohler J. Age-dependent susceptibility of murine T lymphocytes to lymphocytic choriomeningitis virus. J Gen Virol. 1983; 64: 1157–1166.

    Article  Google Scholar 

  48. Buchmeier MJ, Welsh RM, Dutko FJ, Oldstone MB. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980; 30: 275–331.

    Article  PubMed  CAS  Google Scholar 

  49. Dienstag JL. Hepatitis B as an immune complex disease. Semin Liver Dis. 1981; 1: 45–57.

    Article  PubMed  CAS  Google Scholar 

  50. Meuer SC, Moebius U, Manns MM, Dienes HP, Ramadori G, Hess G, Hercend T, Meyer zum Buschenfelde K-H. Clonal analysis of human T lymphocytes infiltrating the liver in chronic active hepatitis B and primary biliary cirrhosis. Eur J Immunol. 1988; 18: 1447–1452.

    Article  PubMed  CAS  Google Scholar 

  51. Chu CM, Shyu WC, Kuo RW, Liaw UF. HLA class I antigen display on hepatocyte membrane in chronic active hepatitis B virus infection: its role in the pathogenesis of chronic type B hepatitis. Hepatology. 1988; 8: 712–717.

    Article  PubMed  CAS  Google Scholar 

  52. Metzger EE, Whittum-Hudson JA. The dichotomy between herpes simplex virus type 1-induced ocular pathology and systemic immunity. Invest Ophthalmol Vis Sci. 1987; 28: 1533–1540.

    PubMed  CAS  Google Scholar 

  53. Borysiewicz LK. Virus infection and autoimmunity. In: Ballardie FW, ed. Autoimmunity in nephritis. UK: Harwood Academic Publ. 1993; 15–25.

    Google Scholar 

  54. Borysiewicz LK. Viral mycoarditis. Horizons Med. 1994; 5: 267–282.

    Google Scholar 

  55. Mimms CA. The pathogenesis of infectious disease, 4th edn. Oxford: Blackwell, 1992.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alp, N., Borysiewicz, L.K. (1994). The Immunology and Pathogenesis of Persistent Virus Infections. In: Sissons, J.G.P., Borysiewicz, L.K., Cohen, J. (eds) Immunology of Infection. Immunology and Medicine Series, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1430-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1430-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4626-8

  • Online ISBN: 978-94-011-1430-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics