Skip to main content

Parallel Computing and Molecular Dynamics Simulations

  • Chapter
Computer Simulation in Chemical Physics

Part of the book series: NATO ASI Series ((ASIC,volume 397))

Abstract

Molecular dynamics simulations are an important means to study macroscopic phenomena at a microscopic level. Due to their huge demand for computing resources, implementations on parallel processor networks are an important topic of research. Some aspects of the design of parallel programs and of the implementations of such programs on a processor network are reviewed. Three general techniques for exploiting parallelism and their appropriateness in the context of molecular dynamics are discussed. We show that short-range and multi-particle potentials can efficiently be implemented when geometric parallelism is used. Our approach is demonstrated by showing some results of large scale molecular dynamics simulations on the nucleation properties of linear chain molecules. These results show that parallel processor networks open new perspectives for the study of large systems and problems which could not previously be dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bekker, E. J. Dijkstra, and H. J. C. Berendsen, Mapping molecular dynamics simulation calculations on a ring architecture, in Parallel Computing: From Theory to Sound Practice, edited by W. Joosenand E. Milgrom, pp. 268–279, IOS Press, Amsterdam, 1992.

    Google Scholar 

  2. S. Chynoweth, U. C. Klomp, and L. Scales, Comput. Phys. Commun. 62, 297 (1991).

    Article  ADS  Google Scholar 

  3. K. Esselink, B. Smit, and P. A. J. Hilbers, J. Comput. Phys. 105 (1993), to appear.

    Article  Google Scholar 

  4. D. Fincham,Molec. Simul. 1,1 (1987).

    Article  Google Scholar 

  5. H. G. Petersen and J. W. Perram, Molec. Phys. 67, 849 (1989).

    Article  ADS  Google Scholar 

  6. M. R. S. Pinches, D. J. Tildesley, and W. Smith, Molec. Simul. 6, 51 (1991).

    Article  Google Scholar 

  7. S. Plimpton and G. Heffelfinger, Scalable parallel molecular dynamics on MIMD supercomputers, in Scalable High Performance Computing Conference SHPCC ‘82, pp. 246–251, IEEE Computer Society, IEEE Computer Society Press, 1992.

    Google Scholar 

  8. D. C. Rapaport, Comput. Phys. Commun. 62, 217 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  9. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, 1987.

    MATH  Google Scholar 

  10. W. J. Dally, A VLSI architecture for concurrent data structures, Kluwer, Hingham, Massachusetts, 1987.

    Book  Google Scholar 

  11. P. A. J. Hilbers, Processor Networks and Aspects of the Mapping Problem, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  12. C. L. Seitz, IEEE Trans. Comput. C-33, 1247 (1984).

    Article  Google Scholar 

  13. A. Trew and G. Wilson, Past, Present, Parallel: A Survey of Available Parallel Computing Systems, Springer-Verlag, 1991.

    MATH  Google Scholar 

  14. L. D. Wittie, IEEE Trans. Comput. C-30, 264 (1981).

    Article  Google Scholar 

  15. S. H. Bokari, IEEE Trans. Comput. C-30 (1981).

    Google Scholar 

  16. K. M. Chandy and S. Taylor, An Introduction to Parallel Programming, Jones and Barlett, 1991.

    Google Scholar 

  17. R. S. Cok, Parallel Programs for the Transputer, Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1991.

    Google Scholar 

  18. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on Concurrent Processors,Volume I, Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1988.

    Google Scholar 

  19. D. W. Heermann and A. N. Burkitt, Parallel Algorithms in Computational Science, Springer-Verlag, Berlin, 1991.

    Book  MATH  Google Scholar 

  20. L. D. J. C. Loyens, A Design Method for Parallel Programs, PhD thesis, Eindhoven University of Technology, 1992.

    MATH  Google Scholar 

  21. J. J. Lukkien, Parallel Program Design and Generalized Weakest Preconditions, PhD thesis, University of Groningen, 1991.

    Google Scholar 

  22. J. J. Lukkien, Transputer Pascal, a user manual, CS Note 8912, University of Groningen, Dept. Computing Science, P. O. Box 800, 9700 AV Groningen, The Netherlands, 1989.

    Google Scholar 

  23. V. N. Rao and V. Kumar, Analysis of scalability of parallel algorithms, CS Note, University of Texas at Austin, Dept. of Computer Science, Austin, Texas 78712, 1989.

    Google Scholar 

  24. J. Woo and S. Sahni, Journal of Supercomputing 3, 209 (1989).

    Article  Google Scholar 

  25. J. L. A. VAN DE Snepscheut, What computing is all about, Springer-Verlag, 1993.

    Book  MATH  Google Scholar 

  26. M. Okuda, D. Brown, J. H. R. Clarke, and T. Yamazaki, A domain decomposition parallelization strategy for molecular dynamics simulations on distributed memory machines, submitted for publication, 1992.

    Google Scholar 

  27. A. R. C. Raine, Molec. Simul. 7, 59 (1991).

    Article  Google Scholar 

  28. W. Smith, Comput. Phys. Commun. 67, 392 (1992).

    Article  ADS  Google Scholar 

  29. H. Sato, Y. Tanaka, H. Iwama, S. Kawakika, M. Saito, K. Morikami, T. Yao, and S. Tsutsumi, Parallelization of AMBER molecular dynamics program for the AP1000 highly parallel computer, in Scalable High Performance Computing Conference SHPCC ‘82, pp. 113–120, IEEE Computer Society, IEEE Computer Society Press, 1992.

    Google Scholar 

  30. S. Y. Liem, D. Brown, and J. H. R. Clarke, Comput. Phys. Commun. 67, 261 (1991).

    Article  ADS  MATH  Google Scholar 

  31. K. Esselink and P. A. J. Hilbers, J. Comput. Phys. 105 (1993), to appear.

    Google Scholar 

  32. K. Esselink and P. A. J. Hilbers, Parallel molecular dynamics on a torus network, in Scalable High Performance Computing Conference SHPCC ‘82, pp. 106–112, IEEE Computer Society, IEEE Computer Society Press, 1992.

    Chapter  Google Scholar 

  33. P. A. J. Hilbers and K. Esselink, Parallel molecular dynamics, in Parallel Computing: From Theory to Sound Practice, edited by W. Joosen and E. Milgrom, pp. 288–299, IOS Press, Amsterdam, 1992.

    Google Scholar 

  34. D. Rigby and R. J. Roe, J. Chem. Phys. 87, 7285 (1987).

    Article  ADS  Google Scholar 

  35. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hilbers, P.A.J., Esselink, K. (1993). Parallel Computing and Molecular Dynamics Simulations. In: Allen, M.P., Tildesley, D.J. (eds) Computer Simulation in Chemical Physics. NATO ASI Series, vol 397. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1679-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1679-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4734-0

  • Online ISBN: 978-94-011-1679-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics