Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 384))

Abstract

We describe a new algorithm for the solution of the laminar, incompressible Navier-Stokes equations for steady, two-dimensional flows. The basis of the method is a robust and efficient multigrid algorithm. A novel feature of our approach is that it dynamically adapts the grid as part of the solution process. Special interpolation operators have been used to ensure exact mass conservation. This technique can give significant savings in both CPU time and memory usage. The code has been implemented on a global shared-memory architecture, and speedups of over 13 have been observed on 20 processors. This implies that less than 2% of the code is intrinsically serial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, D., and Brandt, A. (1987) ‘Local mesh refinement multilevel techniques’, SIAM J. Sci. Stat. Comput., 8, 109–134.

    Article  MathSciNet  MATH  Google Scholar 

  2. Briggs, W. L. (1987) A Multigrid Tutorial, SIAM, Philadelphia.

    MATH  Google Scholar 

  3. Cliffe, K. A., Jones, I. P., Porter, J., Thompson, C. P., and Wilkes, N. S. (1983) ‘Laminar flow over a backward facing step: Solution to a test problem’, in K. Morgan, J. Periaux, F. Thomasset (eds.), Analysis of Laminar Flow over a Backward-Facing Step: A GAMM Workshop, Friedr. Vieweg and Sohn, 140–161.

    Google Scholar 

  4. Cowell, W. R., and Thompson, C. P. (1990) ‘Tools to aid in discovering parallelism and localizing arithmetic in Fortran programs’, Software Practice and Experience, 20, no. 1, 25–47.

    Article  Google Scholar 

  5. Fearn, R. M., Mullin, T., and Cliffe, K. A. (1990) ‘Nonlinear flow phenomena in asymmetric sudden expansion’, J. Fluid Mech., 211, 595–608.

    Article  Google Scholar 

  6. Galpin, P. F., and Raithby, A. D. (1986) ‘Numerical solution of problems in incompressible fluid flow: Treatment of temperature velocity coupling’, Num. Heat Transfer, 10, 105–129.

    MATH  Google Scholar 

  7. Gjerde, K. (1991) ‘Tools to parallelize Fortran 77 programs’, Hovedoppgave ved Institutt for Informatikk, University of Bergen.

    Google Scholar 

  8. Hackbusch, W. (1985) Multi-Grid Methods and Applications, Springer-Verlag, Berlin. 1985.

    MATH  Google Scholar 

  9. Ku, H. C, Hirsh, R. S., and Taylor, T. D. (1987) ‘A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations’, J. Comp. Phys., 70, 439–462.

    Article  MATH  Google Scholar 

  10. McCormick, S., and Thomas, J. W. (1986) ‘The fast adaptive composite grid (FAC) method for elliptic equations’, Math. Comp., 46, 439–459.

    Article  MathSciNet  MATH  Google Scholar 

  11. Thompson, C. P. (1992) ‘The development and validation of a computational fluid dynamics code for global shared memory parallel architectures’, preprint.

    Google Scholar 

  12. Thompson, C. P., Cowell, W. R., and Leaf, G. K. (1992) ‘On the parallelization of an adaptive multigrid algorithm for a class of flow problems’, Parallel Computing, 18, 449–466.

    Article  MATH  Google Scholar 

  13. Thompson, C. P., Leaf, G. K., and Vanka, S. P. (1988) ‘Application of a method to a buoyancy-induced flow problem’, in S. F. McCormick (ed.), Multigrid Methods, Marcel Dekker, Dordrecht, 605–629.

    Google Scholar 

  14. Thompson, C. P., Leaf, G. K., and van Rosendale, J. (1992) ‘A dynamically-adaptive multigrid algorithm for the incompressible Navier-Stokes equations — validation and model problems’, Applied Numerical Math., 9, 511–532.

    Article  MATH  Google Scholar 

  15. Thompson, M. C., and Ferziger, J. H. (1989) ‘An adaptive multigrid technique for the incompressible Navier-Stokes equations’, J. Comp. Phys., 82, no. 1, 94–121.

    Article  MATH  Google Scholar 

  16. Vanka, S. P. (1986) ‘Block-implicit multigrid solution of Navier-Stokes equations in primitive variables’, J. Comp. Phys., 65, no. 1, 138–158.

    Article  MathSciNet  MATH  Google Scholar 

  17. ‘VecPar_77 tutorial introduction and reference manual’, Numerical Algorithms Group, Inc., Downers Grove, Illinois, 1990.

    Google Scholar 

  18. Winters, K. H., and Cliffe, K. A. (1979) ‘A finite element study driven laminar flow in a square cavity’, AERE - R 9444, AERE Harwell, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thompson, C.P. (1993). A Parallel Adaptive Multigrid Algorithm for the Incompressible Navier-Stokes Equations. In: Kaper, H.G., Garbey, M., Pieper, G.W. (eds) Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters. NATO ASI Series, vol 384. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1810-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1810-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4798-2

  • Online ISBN: 978-94-011-1810-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics