Skip to main content

Probe Measurements of Scalar Properties in Reacting Flows

  • Chapter
Combustings Flow Diagnostics

Part of the book series: NATO ASI Series ((NSSE,volume 207))

Abstract

This paper presents a review of the capabilities of probe techniques for combustion diagnostic and outlines the most significant sources of error inherent to their use. The emphasis of the search is on measurements of temperature and on those of major species and ion concentrations in combusting environments, and attention is focused to elucidate the importance of probe measurements to improve understanding of turbulent combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla, A.Y., Ali, B.B., Bradley, D. and Chin, S.B. (1981). “Stratified Combustion in Recirculating Flow”, Comb, and Flame, 43, pp. 131–145.

    Article  Google Scholar 

  • Ahlheim, M. and Günther, R. (1979). “Ionization Measurements in Free-Jet Diffusion Flames”. Comb, and Flame, 36, pp. 117–124.

    Article  Google Scholar 

  • Ahlheim, M. and Günther, R. (1980). “Investigation of Turbulent Reaction Fields by Ionization-Measurements”, AIAA Journal, 20,(5), pp. 638–641.

    Article  ADS  Google Scholar 

  • Allen, J. D. (1975). “Probe Sampling of Oxides of Nitrogen from Flames”, Comb, and Flame, 24, pp. 133–136.

    Article  Google Scholar 

  • Amin, H. (1977). “Effect of Heterogeneous Removal of Oxygen Atoms on Measurements of Nitrogen Dioxide in Combustion Gas Sampling Probes”, Combust. Sci. and Tech., 15, pp. 31–40.

    Article  Google Scholar 

  • Andrews, G. E., O’Leary, S. and Yavuz, H. (1983). “The Reaction Zone Structure of Premixed Turbulent Flames”. Proc. Mech. Engrs., C74, pp. 129–138.

    Google Scholar 

  • Attya, A. M. and Whitelaw, J. H. (1981). “Velocity, Temperature and Species Concentration in Unconfined Kerosene Spray Flames”, ASME Paper 81-WAlHt-6.

    Google Scholar 

  • Ballantyne, A. and Moss, J. B. (1977). “Fine Wire Thermocouple Measurements of Fluctuating Temperature”, Comb. Sci. Tech., 17, pp. 63–72.

    Article  Google Scholar 

  • Ballantyne, A., Boon, D. J. and Moss, J. B. (1976). “Measurements of Fluctuating Temperature in Open Diffusion Flames Employing Fine Wire Thermocouples”, A.A.S.U. Memorandum, No. 76/3.

    Google Scholar 

  • Beér, J. M. and Chigier, N. A. (1972). Combustion Aerodynamics. Wiley, New York.

    Google Scholar 

  • Bennett, H. E. (1961). “The Contamination of Platinum Metal Thermocouples”, Platinum Metal Review, 5, pp. 132–133.

    Google Scholar 

  • Bertrand, C., Pollet, P. and Delbourgo, R. (1979).“A Study of the Combustion Noise Emitted by Turbulent Flames Obeying Experimentally the Wrinkled Flame front Model”, 6th International Symposium on Combustion Processes, Karpacz, Poland, August.

    Google Scholar 

  • Bicen, A. F., Heitor, M. V. and Whitelaw, J. H. (1986). “Velocity and Temperature Measurements in a Can-Type Gas-Turbine”, Advanced Instrumentation for Aero Gas Turbine. AGARDograph no 399, paper 14.

    Google Scholar 

  • Bilger, R. W. (1977). “Probe Measurements in Turbulent Combustion”, In: Experimental Diagnostics in Gas Phase Combustion Systems. Progress in Aeronautics and Astronautics, 53, (Eds. B. T. Zinn et al.), pp. 49–69.

    Google Scholar 

  • Bilger, R. W. (1981). “Laser Diagnostics in Turbulent Combustion: Purposes and Some Results”, J. Non-Equilibrium Thermo., 6, pp. 353–366.

    Article  ADS  Google Scholar 

  • Bilger, R. W. (1991). “Experimental Methods in Combustion Flows — Basic Considerations”, In: Experimental Methods for Flows with Combustion, ed. A. M. K. P. Taylor, Academic Press.

    Google Scholar 

  • Bilger, R. W. and Beck, R. E. (1975). “Further Experiments on Turbulent Jet Diffusion Flames”, 15th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 541–552.

    Google Scholar 

  • Billing, B.F. (1964). “Thermocouples: Their Instrumentation, Selection and Use”, The Institution of Engineering Inspection. Monograph 64/1.

    Google Scholar 

  • Bowman, C.T. (1977). “Probe Measurements in Flames”, Progress in Astronautics and Aeronautics, 53, pp. 1–24.

    MathSciNet  ADS  Google Scholar 

  • Bradbury, L.J. S. and Castro, I.P. (1972). “Some Comments on Heat-Transfer Laws for Fine Wires”. J.F.M., 51, pp. 487–495.

    Article  Google Scholar 

  • Bradley, D. and Entwistle, A.G. (1961). “Determination of the Emissivity, for Total Radiation, of Small Diameter Platinum-10% Rhodium Wires in the Temperature Range 600-1450°C”, British J. of Appl. Phys., 12, pp. 708–711.

    Article  ADS  Google Scholar 

  • Bradley, D. and Ibrahim, S.M.A. (1973). “Electrostatic Probe Theories and Measurements in Flame Plasmas”, J. Phy. D. Appl. Phys., 6., pp. 465–478.

    Article  ADS  Google Scholar 

  • Bradley, D., Lau, A. K. C. and Missaghi, M. (1989). “Response of Compensated Thermocouple to Fluctuating Temperatures: Computer Simulation, Experimental Results and Mathematical Modelling”, Combust. Sci. and Tech., 64. pp. 119–134.

    Article  Google Scholar 

  • Bradley, D. and Matthews, K.I. (1968). “Measurements of High Gas Temperature with Fine Wire Thermocouples”, J. Mech. Eng. Science, 10, pp. 299–305.

    Article  Google Scholar 

  • Browne, L. W. B. and Antonia, R. A. (1981). “The Frequency Response of Cold Wires”. Proc. 7th Biennal Symp. on Turbulence, Rolla-Missouri, pp. 173–180.

    Google Scholar 

  • Calcote, H.F. (1962). “Ion Production and Recombination in Flames”. 8th Svmp. (Intl.′) on Combustion. Williams and Wilkins, pp. 184–189.

    Google Scholar 

  • Carvalho, M.G., Durão, D.F.G., Heitor, M.V. and Moreira, A.L.N. (1991). “The Flow and Heat Transfer Characteristics of an Industrial Glass Furnace”, To appear in Combust. Sci. and Tech..

    Google Scholar 

  • Cernansky, N. P. (1977). “Sampling and Measuring for NO and NO2 in Combustion Systems”, Progress in Astronautics and Aeronautics, 53, pp. 83–102.

    Google Scholar 

  • Chandran, S. B. S., Komerah, N. M. and Strahle, W. C. (1984). “Scalar-Velocity Correlations in a Turbulent Premixed Flame”, 20th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 429–435.

    Google Scholar 

  • Chauvenau, Y., Cambray, P., Gengembre, E., Champion, M. and Bellet, J.C. (1981). “Characterization of a Turbulent Combustion Zone in a Tubular Reactor”. Presented at the 8th Intl. Colloquium on Gas Dynamics of Explosions and Reactive Systems. Minsk, Aug/1981.

    Google Scholar 

  • Chedaille, J. and Braud, Y. (1972). Measurements in Flames. E. Arnold Publ.

    Google Scholar 

  • Chomiak, J. (1972). “Application of Chemiluminescense Measurement to the Study of Turbulent Flow Structure”, Comb, and Flame, 18, pp. 429–433.

    Article  Google Scholar 

  • Clements, R.H. and Smy, P.R. (1970). “Ion Current From a Collision-Dominated Flowing Plasma to a Cylindrical Electrode Surrounded by a Thin Sheath”, J. Appl. Phys., 41, pp. 9.

    Article  Google Scholar 

  • Colket, M.B., Chiappeta, L., Guille, R.N., Zabielski, M.F. and Seery, D.J. (1982). “Internal Aerodynamics of Gas Sampling Probes”, Comb, and Flame, 44, pp. 3–14.

    Article  Google Scholar 

  • Collins, L.W. and Downs, W.R. (1975). “Influence of Probe Contamination on Recombination of Atomic Hydrogen”, Comb, and Flame, 25, pp. 277–278.

    Article  Google Scholar 

  • Collis, D.C. and Williams, M.J. (1959). “Two-Dimensional Convection from Heated Wires at Low Reynolds Number”. J. Fluid Mech., 6, pp. 357–384.

    Article  ADS  MATH  Google Scholar 

  • Comte-Bellot, G. (1976). “Hot-Wire Anemometry”. Annual Review of Fluid Mechanics. Annual Review Inc., Palo Alto, 1976, pp. 209–231.

    Google Scholar 

  • Cookson, R.A., Dunham, P.G. and Kilham, J.K. (1964). “Non-Catalytic Coatings for Thermocouples”, Comb, and Flame, 8, pp. 168–170.

    Article  Google Scholar 

  • Darling, A. S. (1961). “Rhodium-Platinum Alloys — A Critical Review of their Constitution and Properties”, Platinum Metals Review, No. 5, pp. 58–65.

    Google Scholar 

  • Davies, M.R. (1972). “General Response of Resistance Thermometers and Thermocouples in Gases at Low Pressures”, AIAA Journal, 10, N0 4, pp. 546–547.

    Article  ADS  Google Scholar 

  • De, D.S. (1981), “Measurements of Flame Temperature with Multiple Element Thermocouple”, J. Inst. of Energy, pp. 113–116.

    Google Scholar 

  • Dibble, R.W. and Hollenbach, R.E. (1981). “Laser-Rayleigh Thermometry in Turbulent Flames”. 18th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 1489–1499.

    Google Scholar 

  • Drake, M. C., Bilger, R.W. and Stärner, S.H. (1982). “Raman Measurements and Conserved Scalar Modelling in Turbulent Diffusion Flames”, 19th Symp. (Intl.′) on Combustion. The Combustion Institute, pp. 459–467.

    Google Scholar 

  • Durão, D.F.G., Heitor, M.V. and Moreira, A.L.N. (1988). “The Effect of Combustion on Multi-Jet Swirl Stabilized Flames”, Proc. of the Fourth Int. Symp. on Applications of L. A. to Fluid Mechanics, paper 1.9.

    Google Scholar 

  • Durão, D.F.G., Heitor, M.V. and Moreira, A.L.N. (1990).“Turbulent processes in swirling recirculating non-premixed flames”, Presented at the 8th Symp. on Turbulent Shear Flows, Munich, Germany, September, 9-11.

    Google Scholar 

  • Durão, D.F.G., Whitelaw, J. H. and P. Witze (1989). editors, Instrumentation for Combustion and Flow in Engines. Kluwer Academic Publishers, NATO-ASI Series.

    Google Scholar 

  • Durst, F. Melling, A. and Whitelaw, J. H. (1981). Principles and practice of laser-Doppler anemometrv. 2nd ed., Academic Press, New York.

    Google Scholar 

  • Ebrahimi, I. and Kleine, R. (1977). “The Nozzle Fluid Concentration Fluctuation Field in Round Turbulent Free Jets and Jet Diffusion Flames”, 16th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 1711–1723.

    Google Scholar 

  • Eckbreth, A.C. (1988). Laser Diagnostics for Combustion Temperature and Species. Energy and Engineering Science Series, ed. A.K. Gupta and D.G. Lilley, Abacus Press, UK.

    Google Scholar 

  • Eckbreth, A.C. (1981). “Recent Advances in Laser Diagnostics for Temperature and Species Concentration in Combustion”. 18th Svmp. (Intl.) on Combustion. The Combustion Institute, pp. 1471–1488.

    Google Scholar 

  • Eckert, E.R.G. and Goldstein, R.J. (1976). Measurement in Heat Transfer. Hemisphere Publ. Conf. 2nd Ed.

    Google Scholar 

  • England, C., Houseman, J. and Teixeira, D. P. (1973). “Sampling Nitric Oxide from Combustion Gases”, Comb, and Flame, 20, pp. 439.

    Article  Google Scholar 

  • Elgobashi, S. E. (1977). “Studies in the Prediction of Turbulent Diffusion Flames”, In: Studies in Convection. 2. Academic Press, London.

    Google Scholar 

  • England, C., Houseman, J. and Teixeira, D.P. (1973). “Sampling Nitric Oxide from Combustion Gases”. Comb, and Flame, 20, pp. 439–442.

    Article  Google Scholar 

  • Farrow, R.L., Mattern, P.L. and Rahn, L.A. (1982). “Comparison Between CARS and Corrected Thermocouples Temperature Measurements in a Diffusion Flame”. Applied Optics, 21, pp. 3119–3125.

    Article  ADS  Google Scholar 

  • Fox, J. S. and Bertrand, C. (1981). “The Use of Saturation Currents as a Measure of Combustion Noise in Premixed Flames”, 18th Symp. dntl.1 on Combustion. The Combustion Institute, pp. 1553–1558.

    Google Scholar 

  • Fox, M. D. and Weinberg, F. J. (1970). “Measurements of Flame Area in Terms of Saturation Current”, 13th Svmp. (Intl.) on Combustion. The Combustion Institute, pp. 641–648.

    Google Scholar 

  • Friedman, R. (1953). “Measurement of the Temperature Profile in a Laminar Flame”, 4th Svmp. (Intl.) on Combustion. Williams and Wilkins, pp. 259–263.

    Google Scholar 

  • Friedman, R. and Cyphers, J. A. (1955). “Flame Structure III: Gas Sampling in a Low-Density Propane-Air Flame”, The Journal of Chemical Physics, 23., pp. 1875–1880.

    Article  ADS  Google Scholar 

  • Fristrom, R. M. (1976). “Probe Measurements in Laminar Combustion Systems”, In: Combustion Measurements, edited by R. Goulard, Academic Press.

    Google Scholar 

  • Gaydon, A.G. and Wolfhard, H.G. (1970). Flames — Their Structure. Radiation and Temperature. 3rd edition, Chapman and Hall Ltd.

    Google Scholar 

  • Goulard, R., Mellor, A. M. and Bilger, R.W. (1976). “Combustion Measurements in Air Breathing Propulsion Engines. Survey and Research Needs”, Combust. Sci. and Tech., 14, pp. 195–219.

    Article  Google Scholar 

  • Gouldin, F. C. (1980). “Probe Measurements in Multi-Dimensional Reacting Flows”, In: Testing and Measurement Techniques in Heat Transfer and Combustion. AGARD CP-281, pp. 4.1–4.14.

    Google Scholar 

  • Green, J. A. and Sudgen, T. M. (1963). “Some Observations on the Mechanism of Ionization in Flames Containing Hydrocarborns”, 9th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 607–621.

    Google Scholar 

  • Greenhalgh, D.A. (1983).“Gas Phase Temperature and Concentration Diagnostic with Lasers”. AERE R-10764. Also, paper C66/83; Inst. Mech. Eng. Conference — Oxford.

    Google Scholar 

  • Hall, R.J. and Eckbreth, A.C. (1983). “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics”. Laser Applications. Academic Press.

    Google Scholar 

  • Hartley, D. L. and Gusinow, M. A. (1980). “Applications of Optical Diagnostic Techniques in Combustion Research”, In: Testing and Measurement Techniques in Heat Transfer and Combustion. AGARD CP-281, pp. 21.1–21.15.

    Google Scholar 

  • Hassan, M. M., Lockwood, F. C. and Moneib, H. A. (1983). “Measurements in a Gas-Fired Cylindrical Furnace”, Comb, and Flame, 51, pp. 249–261.

    Article  Google Scholar 

  • Hayhurst, A. N. and Kittelson, D. B. (1977). “Heat and Mass Transfer Considerations in the Use of Electrically Heated Thermocouples of Indium versus an Iridium/Rhodium Alloy in Atmospheric Pressure Flames”, Comb, and Flame, 28, pp. 301–317.

    Article  Google Scholar 

  • Heitor, M. V. (1989). “Velocity and Scalar Measurements in Model and Real Gas Turbine Combustors”, In: Instrumentation for Combustion and Flow in Engines, eds. D. F. G. Durão et al., Kluwer Academic Publ,pp. 1–44.

    Google Scholar 

  • Heitor, M.V., Taylor, A.M.K.P. and Whitelaw, J. H. (1985). “Simultaneous Velocity and Temperature Measurements in a Premixed Flame”, Exp. in Fluids, 3, PP. 323–339.

    Article  ADS  Google Scholar 

  • Heitor, M. V., Taylor, A. M. K. P. and Whitelaw, J. H. (1987). “The Interaction of Turbulence and Pressure Gradients in Baffle-Stabilized Premixed Flame”, Journal of Fluid Mechanics, 181, pp. 387–413.

    Article  ADS  Google Scholar 

  • Heitor, M.V., Taylor, A.M.K.P. and Whitelaw, J. H. (1988). “Velocity and Scalar Characteristics of Turbulent Premixed Flames Stabilized on Confined Axisymmetric Baffles”, Combust. Sci. and Tech., 62, pp. 97–126.

    Article  Google Scholar 

  • Heitor, M. V., Taylor, A. M. K. P. and Whitelaw, J. H. (1991). “Laser Velocimetry for Combusting Flows”, In:Experimental Methods for Flows with Combustion, ed. A. M. K. P. Taylor, Academic Press.

    Google Scholar 

  • Heitor, M.V. and Whitelaw, J. H. (1986). “Velocity, Temperature and Species Characteristics of the Flow in a Gas-Turbine Combustor”, Comb, and Flame, 64, PP. 1–32.

    Article  Google Scholar 

  • Hilpert, R. (1933). Warmaggale von Glhlizter Drahten und Rohrenin Lufstrosm. Forsch. Ing. Wes, 4, p. 215.

    Article  Google Scholar 

  • Holderness, F. H., Tilston, J. R. and Macfarlene, J. J. (1969). “Electrical Compensation for Radiation Loss in Thermocouples”, National Gas Turbine Establishement, Note No. NT. 758.

    Google Scholar 

  • Hopkins, K.C., LaRue, J.C. and Samuelsen, G.S. (1989). “Effect of Mean and Variable Time Constant on Compensated Thermocoupl Measurements” In:“Instrumentation for Combustion and Flow in Engines”, Eds. D.F.G. Durão et al., Kluwer Academic Publ, pp. 55–68.

    Google Scholar 

  • Johnson, G.M. Smith. M.Y. and Mulchay, M.F.R. (1979). “The Presence of NO2 in Premixed Flames”, 17th Symp. (Intl.) on Combustion, The Combustion Institute, pp. 647–660.

    Google Scholar 

  • Jones, W.P. (1980). “Models for Turbulent Flows with Variable Density and Combustion”. In:“Prediction Methods for Turbulent Flows”, eds. W. Kollman, Hemisphere Publ. Corp., pp. 379–421.

    Google Scholar 

  • Jones, W. P. and Toral, H. (1983). “Temperature and Composition Measurements in a Research Gas Turbine Combustion Chamber”, Combust. Sci. and Tech., 31, pp. 249–275.

    Article  Google Scholar 

  • Jones, W.P. and Whitelaw, J.H. (1984). “Modelling and Measurements in Turbulent Combustion”. 20th Syposium (International) on Combustion. The Combustion Institute, pp. 233–249.

    Google Scholar 

  • Karlovitz, B., Denniston, D.W., Knapschaefer, D.H. and Wells, F.E. (1953). “Studies on Turbulent Rames”. 4th Symp. (Intl.1 on Combustion. Williams and Wilkins,pp. 613–620.

    Google Scholar 

  • Katsuki, M., Mizutani, Y. and Matsumoto, Y. (1987). “An Improved Thermocouple Technique for Measurements of Fluctuating Temperatures in Flames”, Comb, and Flame, 67, pp. 27–36.

    Google Scholar 

  • Kennedy, I. M. and Kent, J. H. (1979). “Measurements of a Conserved Scalar in Turbulent Jet Diffusion Flames”, 17th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 279–287

    Google Scholar 

  • Kent, J. H. (1970) “A Non-Catalytic Coating for Platinum-Rhodium Thermocouples”, Combustion and Flame, 14, pp. 279–282.

    Article  Google Scholar 

  • Kent, J. H. and Bilger, R.W. (1972a).“Measurements in Turbulent Jet Diffusion Flames”, Charles Rolling Research Laboratory, Technical Note F-41.

    Google Scholar 

  • Kent, J. H. and Bilger, R.W. (1972b).“A Gas Sampling and Analysis System for Turbulent Diffusion Flames”, Charles Rolling Research Laboratory, Technical note F-34.

    Google Scholar 

  • Kent, J. H. and Bilger, R.W. (1973). “Turbulent Diffusion Flames”, 14th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 615–625.

    Google Scholar 

  • Kent, J. H. and Bilger, R.W. (1977). “The Prediction of Turbulent Diffusion Flame Fields and Nitric Oxide Formation”, 16th Svmp. (Intl.) on Combustion. The Combustion Institute, pp. 1643–1656.

    Google Scholar 

  • Khalil, M. B. and Whitelaw, J. H. (1977). “Aerodynamic and Thermodynamic Characteristics of Kerosene-Spray Flames”, 16th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 569–576.

    Google Scholar 

  • Kramlich, J. C. and Malte, P. C. (1978). “Modeling and Measurement of Sample Probe Effects on Pollutant Gases Drawn from Flame Zones”, Combust. Sci. and Techn., 18, PP. 91–104.

    Article  Google Scholar 

  • Lapp, M. (1980). “Raman-Scattering Measurements of Combustion Properties”. In: Laser Probes for Combustion Chemistry (ed. D.P. Crosley).

    Google Scholar 

  • LaRue, J.C., Samuelsen, G.S. and Sciler, E.T. (1984).“Momentum and Heat Flux in a Swirl Stabilized Combustor”. 20th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 277–285.

    Google Scholar 

  • Lawton, J. and Weinberg, F.J. (1969). Electrical Aspects of Combustion. Clarendon Press.

    Google Scholar 

  • Lecordier, J. C., Paranthoen, P. and Petit, C. (1981). “The Effect of the Thermal Prog-Wind Interaction on the Response of a Cold Wire in Gaseous Flows”. Proc. 7th Biennal Svmp. on Turbulence. Rolla-Missouri, pp. 181–191.

    Google Scholar 

  • Lengelle, G. and Verdier, C. (1973). Gas Sampling and Analysis in Combustion Phenomena. AGARDograph 168.

    Google Scholar 

  • Lenz, W. and Guenther, R. (1980). “Measurements of Fluctuating Temperature in a Free-Jet Diffusion Flame”. Comb, and Flame, 37, pp. 63–70.

    Article  Google Scholar 

  • Lewis, K.J. and Moss, J.B. (1979). “Time Resolved Scalar Measurements in a Confined Turbulent Premixed Flame”, 17th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 267–277.

    Google Scholar 

  • Lewis, M.H. and Smoot, L.D. (1981). “Turbulent Gaseous Combustion. Part I: Local Species Concentration Measurements”, Combust, and Flame, 42, pp. 183–196.

    Article  Google Scholar 

  • Lockwood, F.C. and Moneib, H. (1980). “Fluctuating Temperature Measurements in a Heated Round Free Jet”. Comb. Sci. Tech., 22, pp. 63–81.

    Article  ADS  Google Scholar 

  • Lockwood, F.C. and Moneib, H. (1981). “A New On-Line Pulsing Technique for Response Measurements of Thermocouple Wires”. Comb. Sci. Tech., 26, pp. 177–181.

    Article  Google Scholar 

  • Lockwood, F.C. and Odidi, A.D.D. (1974). “Measurement of Mean and Fluctuating Temperature and of Ion Concentration in Round Free-Jet Turbulent Diffusion and Premixed Flames”. 15th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 561–571.

    Google Scholar 

  • Lueck, R. G. and Osborn, T. R. (1979). “On the Frequency Response of Wire Sensors as Measured by Internal and Acoustic Heating”. DISA Information, No. 24, pp. 36–39.

    Google Scholar 

  • MacLatchy, C. S. (1979). “Langmuir Probe Measurements of Ion Density in an Atmospheric-Pressure Air-Propane Flame”, Comb, and Flame, 36, pp. 171–178.

    Article  Google Scholar 

  • Madson, J. M. and Theby, F. A. (1984). “SiO2 Coated Thermocouples”, Combust. Sci. and Tech., 36, pp. 205–209.

    Article  Google Scholar 

  • Maglic, K. D. (1985). “High Temperature Measurements”, In Measurement Techniques in Heat and Mass Transfer, edited by R.I. Soloukhin and N. H. Afgan.

    Google Scholar 

  • Malte, P. C. and Kramlich, J. C. (1980). “Further Observations of the Effect of Sample Probes on Pollutant Gases Drawn From Flame Zones”, Combustion Science and Technology, 22, pp. 263–269.

    Article  Google Scholar 

  • Mehta, G.K., Ramachandra, M.K. and Strahle, W.C. (1981). “Correlations Between Light Emission, Acoustic Emission and Ion Density in Premixed Turbulent Flames”, 18th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 1051–1059.

    Google Scholar 

  • Moffat, R. J. (1962). “Gas Temperature Measurement”. In: Temperature, its Measurement and Control in Science and Industry. 3(2), Reinhold Publ.

    Google Scholar 

  • Moneib, H. A. (1980). “Experimental Study of the Fluctuating Temperature in Inert and Reacting Turbulent Jets”, Ph. D. Thesis, Imperial College of Science and Technology, Mech. Eng. Dept., University of London.

    Google Scholar 

  • Nina, M.N.R. and Pita, G.P. (1985). “Measurements of Fluctuating Gas Temperatures Using Compensated Fine Wire Thermocouples”. AGARD: 65th PEP Symposium, pp. 32.1–32.10, Bergen, Norway — May 1985.

    Google Scholar 

  • Odidi, A. O. O. (1974). “The Influence of Turbulent Times on Time-Mean Rate of Chemical Reaction”, Ph. D. Thesis, Imperial College of Science and Technology, Mech. Eng. Dept., University of London.

    Google Scholar 

  • Paranthoen, P., Lecordier, J. C., Petit, C. and Gajan, P. (1983).“Survey and Recent Developments of Frequency Response Studies of Cold Wires and Fine Wire Thermocouple in Turbulent Heated Flow”, 8th Australasian Fluid Mechanics Conference, Univ. of Newcastle, pp. 6B.1–6B.4.

    Google Scholar 

  • Paranthoen, P., Petit, C. and Lecordier, J.C. (1982). “The Effect of the Thermal Prong-Wire Interaction on the Response of a Cold Wire in Gaseous Flows (Air, Argon and Helium)”, Journal of Fluid Mechanics, 124. pp. 457–473.

    Article  ADS  Google Scholar 

  • Peeters, J. and Van Tiggelen, A. (1969). “Experimental Determination of the Rate of the Chemi-Ionization Process”. 12th Svmp. dntl.1 on Combustion. The Combustion Institute, pp. 437.

    Google Scholar 

  • Penner, S.P., Wang, C.P. and Bahadori, M.Y. (1985). “Laser Diagnostics Applied to Combustion Systems”. 20th Symp. (Intl.) on Combustion, The Combustion Institute, pp. 1149–1176.

    Google Scholar 

  • Petit, C., Gajan, P., Lecordier, J. C. and Paranthoen, P. (1982). “Frequency Response of Fine Wire Thermocouple”, J. Phys. E: Sci. Instrum., 15, pp. 760–764.

    Article  ADS  Google Scholar 

  • Pollock, D. D. (1984). “Thermocouples in High-Temperature Reactive Atmospheres”, Combust. Sci. and Tech., 42, pp. 111–113.

    Article  Google Scholar 

  • Ramshaw, C. (1968). “Notes on the Measurement of gas Composition and Mixture Ratio in a Rocket Combustion Chamber”, Institute of Fuel, December, pp. 455–460.

    Google Scholar 

  • Reuss, D.L. (1983). Temperature Measurements in a Radially Symmetric Flame Using Holographic Interferometry”. Comb, and Flame, 49, pp. 207–219.

    Article  Google Scholar 

  • Rhys, D. W. and Taimsalu, P. (1969). “Effect of Alloying Additions on the Thermoelectric Properties of Platinum”, Engelhard Tech. Bull. X, 2, pp. 41–47.

    Google Scholar 

  • Roquemore, W.M., and Yaney, P.P. (1979). “Comparison of Thermocouple, Gas Sampling and Raman Measured Temperatures in an Afterburning Turbojet Engine Plume”. Proc. 10th Materials Res. Symposium on Characterization of High Temperature Vapours and Gases, pp. 973–1025, NBS, Maryland, Sept., 1978.

    Google Scholar 

  • Rosen, P. (1954).“The Potential Flow of a Fluid into a Sampling Probe”, The John Hopkins University, Report A. P. L./JHU-CF-2248.

    Google Scholar 

  • Ryder, R. J. and McMackin, J. J. (1976). “Some Factors Affecting Stack Emissions from a Glass Container Furnace”, In Combustion Melting in Glass Industry, edited by A. G. Pincus, Publ. Books for Industry and the Glass Industry Magazine,pp. 229–236.

    Google Scholar 

  • Samuelsen, G. S. and Benson, R. C. (1979). “Chemical Transformations of Nitrogen Oxides while Sampling Combustion Products”, In: Nitrogeneous Air Pollutants — Chemical and Biological Implication, edited by D. Grosjean, Ann Arbor Sci. Pub.,pp. 65–81.

    Google Scholar 

  • Samuelsen, G. S., LaRue, J. C. and Sciler, E. T. (1984). “Instantaneous Two-Component Laser Anemometry and Temperature Measurements in a Complex Reacting Flow”, Proceedings of the Second International Symposium on Applications of Laser Anemometry to Fluid Mechanics. Lisboa, Portugal, paper 11.3.

    Google Scholar 

  • Sato, A., Hashiba, K., Hasatani, M., Sugaiyama, S. and Kimura, J. (1975). “A Correctional Calculation Method for Thermocouple Measurements of Temperatures in Flames”, Comb, and Flame, 24, pp. 35–41.

    Article  Google Scholar 

  • Sbaibi, A., Parathoen, P. and Lecordier, J.C. (1989). “Frequency Response of Fine Wires Under Simultaneously Radiative-Convective Heat Transfer”, J. Phys. E: Sci. Instrum., 22, pp. 14–18.

    Article  ADS  Google Scholar 

  • Scadron, M.D. and Warshwsky, I. (1985).“Experimental Determination of Time Constants and Nusselt Numbers for Bara-Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation Errors”, NACA TN-2599.

    Google Scholar 

  • Schefer, R. W., Matthews, R. D., Cernansky, N. P. and Sawyer, R. F. (1973).“Measurements of NO and NO2 in Combustion Systems”, Estern States Section/The Combustion Institute, Fall Meeting, El Segundo, California.

    Google Scholar 

  • Schoenung, S. M. and Hanson, R. K. (1981). “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques”, Combust. Sci. and Tech., 24, pp. 227–237.

    Article  Google Scholar 

  • Seery, D.J. and Zabielski, M.F. (1989). “Comparisons Between Flame Species Measured by Probe Sampling and Optical Spectrometry Techniques”. Combust, and Flame, 78, pp. 169–177.

    Article  Google Scholar 

  • Shivashankara, B.N., Strahle, W.C. and Handley, J.L. (1975). “Evaluation of Combustion Noise Scaling Laws of an Optical Technique”, AIAA I, No 5, pp. 623–627.

    Google Scholar 

  • Sivasegaram, S. and Whitelaw, J.H. (1983). “Temperature Characteristics of Turbulent Premixed Flames Stabilized on a Step”. Expts. in Fluids, 1, pp. 161–165.

    ADS  Google Scholar 

  • Son, S. F., Queiroz, M. and Wood, C. G. (1989). “Compensation of Thermocouples for Thermal Inertia Effects Using a Digital Deconvolution”, 1989 National Heat transfer Conference: Heat transfer Phenomena in Radiation, Combustion and Fires, 106. pp. 515–522.

    Google Scholar 

  • Strahle, W.C. and Muthukrishnan, M. (1976). “Thermocouple Time Constant Measurement by a Cross Power Spectra”. AIAA J., 14, pp. 1642–1644.

    Article  ADS  Google Scholar 

  • Suzuki, T. and Hirand, T. (1984). “Dynamixc Characteristics of Flame Fronts in a Turbulent Premixed Flame Zone”, 20th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 437–444.

    Google Scholar 

  • Suzuki, T., Hirano, T. and Tsuji, H. (1979). “Flame Front Movements of a Turbulent Premixed Flame”, 17th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 289–297.

    Google Scholar 

  • Takagi, T., Shin, H. D. and Ishio, A. (1981). “A Study of the Structure of Turbulent Diffusion Flames: Properties of Fluctuations of Velocity, Temperature and Ion Concentration”, Comb, and Flame, 41, pp/ 261-271.

    Google Scholar 

  • Tanaka, H. and Yanagi, T. (1983). “Cross-Relation of Velocity and Temperature in a Premixed Turbulent Flame”. Comb, and Rame, 51, pp. 183–191.

    Google Scholar 

  • Taylor, A.M.K.P. (1991). Experimental Methods for Flows with Combustion. Academic Press.

    Google Scholar 

  • Tiné, G. (1961). Gas Sampling and Chemical Analysis in Combustion Process. Pergamon, Oxford.

    Google Scholar 

  • Toral, H. and Whitelaw, J. H. (1982). “Velocity and Scalar Characteristics of the Isothermal and Combusting Flows in a Combustor Sector Rig”, Comb, and Flame, 45, pp. 251–272.

    Article  Google Scholar 

  • Tse, D. (1988).“Flow and Combustion Characteristics of Model Annular and Can-Type Combustors”. PhD. Thesis, University of London.

    Google Scholar 

  • Tsuji, H. and Hirano, T. (1970). “Ion-Concentration Distributions in Two-Dimensional Nozzle Burner Flames at Atmospheric Pressure”, Comb, and FlameComb, and Flame, 15, pp-47-56.

    Google Scholar 

  • Ventura, J.M.P., Suzuki, T., Yule, A.J., Ralph, S. and Chigier, N.A. (1981). “The Investigation of Time Dependent Flame Structure by Ionization Probes”. 18th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 1543–1551.

    Google Scholar 

  • Verriopoulos, C.A. (1983).“Effects of Convex Surface Curvature on Heat Transfer in Turbulent Flow”. Ph.D. Thesis, University of London.

    Google Scholar 

  • Vranos, A., Faucher, J.E. and Curtis, W.E. (1969). “Turbulent Mass Transport and Rates of Reaction in a Confined Hydrogen Main Diffusion Flame”, 12 Symp. (Intl.) on Combustion. The Combustion Institute, pp. 1051–1057.

    Google Scholar 

  • Wasan, V. P. and Gupta, C. L. (1968).“Thermocouple for High Temperature Measurement”, Engelhard Technical Bulletin.

    Google Scholar 

  • Westenberg, A. A., Raezer, S. D. and Fristrom, R. M. (1957). “Interpretation of the Sample taken by a Probe in a Laminar Concentration Gradient”, Comb, and Flame, 1, pp. 467–478.

    Article  Google Scholar 

  • Whitelaw, J.H. (1984). “Measurement Techniques for Combusting Flows”, The Imperial College of Science, Technology and Medicine, Dept Mechanical Engng., FS/84/11.

    Google Scholar 

  • Worterberg, G. (1965). “Ion-Concentration Measurements in a Flat Flame at Atmospheric Pressure”, 10th Svmp. (Intl.) on Combustion. The Combustion Institute, pp. 651–655.

    Google Scholar 

  • Yanagi, T. (1972). “Effect of Concentration Gradient on Composition of Sampled Gas. II: Experimental verification”, Comb, and Flame, 19, pp. 1–9.

    Article  Google Scholar 

  • Yanagi, T. (1977). “Effects of Probe Sampling Rates on Sample Composition”, Comb, and Flame, 28, pp. 33–44.

    Article  Google Scholar 

  • Yanagi, T. and Mimura, Y. (1972). “Effect of Concentration Gradient on Composition of Sampled Gas. I: Theoretical Analysis”, Comb, and Rame, 18, pp. 347–356.

    Google Scholar 

  • Yanagi, T. and Mimura, Y. (1981). “Velocity-Temperature Correlation in a Premixed Flame”. 18th Svmp. (Intl.) on Combustion. The Combustion Institute, pp. 1031–1039.

    Google Scholar 

  • Yoshida, A. and Guenther, R. (1980). “Experimental Investigation of Thermal Structure of Turbulent Premixed Flames”. Comb, and Flame, 38 pp. 249–258.

    Article  Google Scholar 

  • Yoshida, A. and Günther, R. (1980).“Temperature Ionization Measurements in Turbulent Premixed Flames”. Paper AIAA-80-0207, presented at AIAA 18th Aerospace Sciences Meeting, Pasadena, CA.

    Google Scholar 

  • Yoshida, A. and Tsuji (1979). “Measurements of Fluctuating Temperature and Velocity in a Premixed Flame”. 17th Symp. (Intl.) on Combustion. The Combustion Institute, pp. 945–956.

    Google Scholar 

  • Yule, A.J., Taylor, D.S. and Chigier, N.A. (1978).“On-Line Compensation and Processing of Thermocouple Signals for Temperature Measurement in Turbulent Flames”. AIAA paper 78-30.

    Google Scholar 

  • Yule, A. J., Ventura, J. M. P. and Chigier, N. A. (1983).“On Large Eddy Structure and Turbulent Mixing in Flames”, Proceedings of the Seventh Symposium on Turbulence, University of Missouri-Rolla.

    Google Scholar 

  • Zabielski, M.F., Dodgen, L. G., Colket, M.B. and Seery, D.J. (1981). “The optical and probe measurement of NO: a comparative study”, 18th Svmp. flntl.′) on Combustion. The Combustion Institute, pp. 1591–1598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heitor, M.V., Moreira, A.L.N. (1992). Probe Measurements of Scalar Properties in Reacting Flows. In: Durão, D.F.G., Heitor, M.V., Whitelaw, J.H., Witze, P.O. (eds) Combustings Flow Diagnostics. NATO ASI Series, vol 207. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2588-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2588-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5142-2

  • Online ISBN: 978-94-011-2588-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics