Skip to main content

The chloroplast genome

  • Chapter
10 Years Plant Molecular Biology

Abstract

Chloroplasts are intracellular organelles in plants which contain the entire machinery necessary for the process of photosynthesis. They also participate in the biosynthesis of amino acids, nucleotides, lipids and starch. Mendel’s law was rediscovered at the beginning of this century, and in 1909 Baur and Correns separately published the first reports of non-Mendelian inheritance based on studies of variegation in higher plants. Some of the green-and-white variegated leaves were shown to be caused by factors inherited in a non-Mendelian manner. Further analysis of variegation in higher plants revealed that the genetic determinants for these characters were associated with chloroplasts. However, the difficulty of obtaining specific chloroplast mutations has limited the study of non-Mendelian genetics in higher plants. Our knowledge of extranuclear genetics came primarily from studies using the unicellular alga Chlamydomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt J, Morris J, Westhoff P, Herrmann RG: Nucleotide sequence of the clustered genes for the 44 kd chlorophyll a apoprotein and the ‘32 kd’-like protein of the photosystem II reaction center in the spinach plastid chromosome. Curr Genet 8: 597–606 (1984).

    Article  CAS  Google Scholar 

  2. Barkan A: Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J 7: 2637–2644 (1988).

    PubMed  CAS  Google Scholar 

  3. Bedbrook JR, Bogorad L: Endonuclease recognition sites mapped on Zea mays chloroplast DNA. Proc Natl Acad Sci USA 73: 4309–4319 (1976).

    Article  PubMed  CAS  Google Scholar 

  4. Bedbrook JR, Kolodner R: The structure of chloroplast DNA. Annu Rev Plant Physiol 30: 593–620 (1979).

    Article  CAS  Google Scholar 

  5. Bedbrook JR, Kolodner R, Bogorad L: Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell 11: 739–749 (1977).

    Article  PubMed  CAS  Google Scholar 

  6. Bennett DC, Rogers SA, Chen LJ, Orozco Jr EM: A primary transcript in spinach chloroplasts that completely lacks a 5′ untranslated leader region. Plant Mol Biol 15: 111–119 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. Berends T, Gamble PE, Mullet JE: Characterization of the barley chloroplast transcription units containing psaA-psaB and psbD-psbC. Nucl Acids Res 15: 5217–5240 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. Bird CR, Koller B, Auffret AD, Huttly AK, Howe CJ, Dyer TA, Gray JC: The wheat chloroplast gene for CF0 subunit I of ATP synthase contains a large intron. EMBO J 4: 1381–1388 (1985).

    PubMed  CAS  Google Scholar 

  9. Blowers AD, Ellmore GS, Klein U, Bogorad L: Transcriptional analysis of Endogenous and foreign genes in chloroplast transformants of Chlamydomonas. Plant Cell 2: 1059–1070 (1990).

    PubMed  CAS  Google Scholar 

  10. Bogorad L, Vasil IK (eds): The Molecular Biology of Plastids. Academic Press, San Diego (1991).

    Google Scholar 

  11. Bonnard G, Michel F, Weil JH, Steinmetz A: Nucleotide sequence of the split tRNA-Leu (UAA) gene from Vicia faba chloroplasts: evidence for structural homologies of the chloroplast tRNA-Leu intron with the intron from the autosplicable Tetrahymena ribosomal RNA precursor. Mol Gen Genet 194: 330–336 (1984).

    Article  CAS  Google Scholar 

  12. Bowman CM, Dyer TA: 4.5 S ribonucleic acid, a novel ribosome component in the chloroplasts of flowering plants. Biochem J 183; 605–613 (1979).

    PubMed  CAS  Google Scholar 

  13. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC: Chloroplast transformation in Chlamydomonas with high velocity microprojectills. Science 240: 1534–1538 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. Bülow S, Link G: Sigma-like activity from mustard (Sinapis alba L.) chloroplasts conferring DNA-binding and transcription specificity to E. coli core RNA polymerase. Plant Mol Biol 10: 349–357 (1988).

    Article  Google Scholar 

  15. Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kück U, Bennoun P, Rochaix JD: Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 52: 903–913 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. Christopher DA, Hallick RB: Euglena gracilis chloroplast ribosomal protein Operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III. Nucl Acids Res 17: 7591–7607 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. Christopher DA, Hallick RB: Complex RNA maturation pathway for a chloroplast ribosomal protein Operon with an internal tRNA cistron. Plant Cell 2: 659–671 (1990).

    PubMed  CAS  Google Scholar 

  18. Chun EHL, Vaugham MH, Rich A: The isolation and characterization of DNA associated with chloroplast preparations. J Mol Biol 7: 130–141 (1963).

    Article  PubMed  CAS  Google Scholar 

  19. Delp G, Igloi GL, Kössel H: Identification of in vivo processing intermediates and of splice junctions of tRNAs from maize chloroplasts by amplification with the polymerase chain reaction. Nucl Acids Res 19: 713–716 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. Deng XW, Wing RA, Gruissem W: The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86: 4156–4160 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. Deno H and Sugiura M: Chloroplast tRNA-Gly gene contains a long intron in the D stem: nucleotide sequences of tobacco chloroplast genes for tRNA-Gly (UCC) and tRNA-Arg (UCU). Proc Natl Acad Sci USA 81: 405–408 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. Douglas SE (1991): Unusual organization of a ribosomal protein Operon in the plastid genome of Cryptomonas Φ: evolutionary considerations. Curr Genet 19: 289–294 (1991).

    Google Scholar 

  23. Driesel AJ, Crouse EJ, Gordon K, Bohnert HJ, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH: Fractionation and identification of spinach chloroplast transfer RNAs and mapping of their genes on the restriction map of chloroplast DNA. Gene 6: 285–306 (1979).

    Article  PubMed  CAS  Google Scholar 

  24. Dyer TA: The chloroplast genome: its nature and role in development. In: Baker NR, Barber J (eds) Chloroplast Biogenesis, pp. 23–69. Elsevier, Amsterdam (1984).

    Google Scholar 

  25. Eisermann A, Tiller K, Link G: In vitro transcription and DNA binding characteristics of chloroplast and etioplast extracts from mustard (Sinapis alba) indicate differential usage of the psbA promoter. EMBO J 9: 3981–3987 (1990).

    PubMed  CAS  Google Scholar 

  26. Ellis RJ: Chloroplast proteins: synthesis, transport and assembly. Annu Rev Plant Physiol 32: 111–137 (1981).

    Article  CAS  Google Scholar 

  27. Eneas-Filho J, Hartley MR, Mache R: Pea chloroplast ribosomal proteins: characterization and site of synthesis. Mol Gen Genet 184: 484–488 (1981).

    Article  CAS  Google Scholar 

  28. Fish LE, Bogorad L: Identification and analysis of the maize P700 chlorophyll a proteins of PSI-A1 and PSI-A2 by high pressure liquid chromatography analysis and partial sequence determination. J Biol Chem 261: 8134–8139 (1986).

    PubMed  CAS  Google Scholar 

  29. Fish LE, Kück U, Bogorad L: Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a-protein complex of photosystem I. J Biol Chem 260: 1413–1421 (1985).

    PubMed  CAS  Google Scholar 

  30. Gamble PE, Mullet JE: Blue light regulates the accumulation of two psbD-psbC transcripts in barley chloroplasts. EMBO J 8: 2785–2794 (1989).

    PubMed  CAS  Google Scholar 

  31. Gamble PE, Sexton TB, Mullet J: Light-dependent changes in psbD and psbC transcripts of barley chloroplasts: accumulation of two transcripts maintains psbD and psbC translation capability in mature chloroplasts. EMBO J 7: 1289–1297 (1988).

    PubMed  CAS  Google Scholar 

  32. Gantt JS: Nucleotide sequences of cDNAs encoding four coplete nuclear-encoded plastid ribosomal proteins. Curr Genet 14: 519–528 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. Gillham NW, Harris EH, Randolph-Anderson BL, Boynton JE, Hauser CR, McElwain KB, Newman SM: Molecular genetics of chloroplast ribosomes in Chlamydomonas. In: Mache R, Stutz E, Subramanian AR (eds) The Translational Apparatus of Photo synthetic Organelles, pp. 127–144. Springer-Verlag, Berlin (1991).

    Chapter  Google Scholar 

  34. Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix JD: A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 65: 135–143 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. Graf L, Kössel H, Stutz E; Sequencing of 16S-23S spacer in a ribosomal RNA Operon of Euglena gracilis chloroplast DNA reveals two tRNA genes. Nature 286: 908–910 (1980).

    Article  PubMed  CAS  Google Scholar 

  36. Gray JC: Genetics and synthesis of chloroplast membrane proteins in Photosynthesis. In: Amesz J (ed) Photosynthesis, pp. 319–342. Elsevier, Amsterdam (1987).

    Chapter  Google Scholar 

  37. Gray JC, Hird SM, Dyer TA: Nucleotide sequence of a wheat chloroplast gene encoding the proteolytic subunit of an ATP-dependent protease. Plant Mol Biol 15: 947–950 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. Gray PW, Hallick RB: Physical mapping of the Euglena gracilis chloroplast DNA and ribosomal RNA gene region. Biochem 17: 284–289 (1978).

    Article  CAS  Google Scholar 

  39. Greenberg BM, Gruissem W, Hallick RB: Accurate processing and pseudouridylation of chloroplast transfer RNA in a chloroplast transcription system. Plant Mol Biol 3: 97–109 (1984).

    Article  CAS  Google Scholar 

  40. Gruissem W: Chloroplast RNA: transcription and processing. In Marcus A (ed) Biochemistry of Plants, pp. 151–191. Academic Press, San Diego (1989).

    Google Scholar 

  41. Gruissem W, Elsner-Menzel C, Latshaw S, Narita JO, Schaffer MA, Zurawski G: A subpopulation of spinach chloroplast tRNA genes does not require upstream promoter elements for transcription. Nucl Acids Res 14: 7541–7556 (1986).

    Article  PubMed  CAS  Google Scholar 

  42. Gruissem W, Greenberg BM, Zurawski G, Prescott DM, Hallick RB: Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system. Cell 35: 815–828 (1983).

    Article  PubMed  CAS  Google Scholar 

  43. Gruissem W, Zurawski G: Identification and mutational analysis of the promoter for a spinach chloroplast transfer RNA gene. EMBO J 4: 1637–1644 (1985).

    PubMed  CAS  Google Scholar 

  44. Gruissem W, Zurawski G: Analysis of promoter regions for the spinach chloroplast rbc L, atp B and psbA genes. EMBO J 4: 3375–3383 (1985).

    PubMed  CAS  Google Scholar 

  45. Haff LA, Bogorad L: Hybridization of maize chloroplast DNA with transfer ribonucleic acids. Biochem 15: 4105–4109 (1976).

    Article  CAS  Google Scholar 

  46. Hagemann R: Genetics and molecular biology of plastids of higher plants. In: Stadler Symposium vol. 11, pp. 91–116. University of Missouri, Columbia (1979).

    Google Scholar 

  47. Hallick RB: Proposals for the naming of chloroplast genes. II Update to the nomenclature of genes for thylakoid membrane polypeptides. Plant Mol Biol Rep 7: 266–275 (1989).

    Article  CAS  Google Scholar 

  48. Hallick RB, Gingrich JC, Johanningmeier U, Passavant CW: Introns in Euglena and Nicotiana chloroplast protein genes. In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular Form and Function of the Plant Genome, pp, 211–231. Plenum Press, New York (1985).

    Google Scholar 

  49. Hallick RB, Hollingsworth MJ, Nickoloff JA: Transfer RNA genes of Euglena gracilis chloroplast DNA. Plant Mol Biol 3: 169–175 (1984).

    Article  CAS  Google Scholar 

  50. Hallick RB, Lipper C, Richards OD, Rutter WJ: Isolation of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. Biochem 15: 3039–3045 (1976).

    Article  CAS  Google Scholar 

  51. Heinemeyer W, Alt J, Herrmann RG: Nucleotide sequence of the clustered genes for apocytochrome b6 and subunit 4 of the cytochrome b/f complex in the spinach plastid chromosome. Curr Genet 8: 543–549 (1984).

    Article  CAS  Google Scholar 

  52. Herrmann RG, Westhoff P, Alt J, Tittgen J and Nelson N: Thylakoid membrane protein and their genes. In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular Form and Function of the Plant Genome, pp. 233–256. Plenum Press, New York (1985).

    Google Scholar 

  53. Hiratsuka J, Shimada H, Whittier RF, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li Y, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M: The complete sequence of the rice (Oryza sativd) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194 (1989).

    Article  PubMed  Google Scholar 

  54. Hirschberg J, Mcintosh L: Molecular basis of herbicide resistance in Amaranthus hybridus. Science 222: 1346–1349 (1983).

    Article  PubMed  CAS  Google Scholar 

  55. Hu J, Bogorad L: Maize chloroplast RNA polymerase: the 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc Natl Acad Sci USA 87: 1531–1535 (1990).

    Article  PubMed  CAS  Google Scholar 

  56. Hu J, Troxler RF, Bogorad L: Maize chloroplast RNA polymerase: the 78-kilodalton polypeptide is encoded by the plastid rpoCl gene. Nucl Acids Res 19: 3431–3434 (1991).

    Article  PubMed  CAS  Google Scholar 

  57. Igloi GL, Meinke A, Döry I, Kössel H: Nucleotide sequence of the maize chloroplast rpo B/C1/C2 Operon: comparison between the derived protein primary structures from various organisms with respect to functional domains. Mol Gen Genet 221: 379–394 (1990).

    Article  PubMed  CAS  Google Scholar 

  58. Johnson CH, Kruft V, Subramanian AR: Identification of a plastid-specific ribosomal protein in the 30 S subunit of chloroplast ribosomes and isolation of the cDNA clone encoding its cytoplasmic precursor. J Biol Chem 265: 12790–12795 (1990).

    PubMed  CAS  Google Scholar 

  59. Jolly SO, Bogorad L: Preferential transcription of cloned maize chloroplast DNA sequences by maize chloroplast RNA polymerase. Proc Natl Acad Sci USA 77: 822–826 (1990).

    Article  Google Scholar 

  60. Karabin GD, Farley M, Hallick RB: Chloroplast gene for M r 32 000 polypeptide of photosystem II in Euglena gracilis is interrupted by four intron s with conserved boundary sequences. Nucl Acids Res 12: 5801–5812 (1984).

    Article  PubMed  CAS  Google Scholar 

  61. Koch W, Edwards K, Kössel H: Sequencing of the 16S–23S Spacer in a ribosomal RNA Operon of zea mays chloroplast DNA reveals two split tRNA genes. Cell 25: 203–213 (1981).

    Article  PubMed  CAS  Google Scholar 

  62. Kohchi T, Umesono K, Ogura Y, Komine Y, Nakahigashi K, Komano T, Yamada Y, Ozeki H, Ohyama K: A nicked group II intron and trans-splicing in liverwort, Marchantia polymorpha, chloroplasts. Nucl Acids Res 16: 10025–10036 (1988).

    Article  PubMed  CAS  Google Scholar 

  63. Koller B, Delius H: Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol Gen Genet 178: 261–269 (1980).

    Article  CAS  Google Scholar 

  64. Koller B, Gingrich JC, Stiegler GL, Farley MA, Delius H, Hallick RB: Nine introns with conserved boundary sequences in the Euglena gracilis chloroplast ribulose-1,5-bisphosphate carboxylase gene. Cell 36: 545–553 (1984).

    Article  PubMed  CAS  Google Scholar 

  65. Kössel H, Döry I, Igloi G, Maier R: A leucine-zipper motif in photosystem I. Plant Mol Biol 15: 497–499 (1990).

    Article  PubMed  Google Scholar 

  66. Krebbers ET, Larrinua IM, Mcintosh L, Bogorad L:The maize chloroplast genes for the β and ε subunits of the photo synthetic coupling factor CF1 are fused. Nucl Acids Res 10: 4985–5002 (1982).

    Article  PubMed  Google Scholar 

  67. Kück U: The intron of a plastid gene from a green alga contains an open reading frame for a reverse transcrip-tase-like enzyme. Mol Gen Genet 218: 257–265 (1989).

    Article  PubMed  Google Scholar 

  68. Kück U, Choquet Y, Schneider M, Dron M, Bennoun P: Structural and transcriptional analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardtii: evidence for in vivo trans-splicing. EMBO J 6: 2185–2195 (1987).

    PubMed  Google Scholar 

  69. Kuchka MR, Goldschmidt-Clermont M, van Dillewijn J, Rochaix JD: Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II. Cell 58: 869–876 (1989).

    Article  PubMed  CAS  Google Scholar 

  70. Lerbs S, Bräutigam E, Mache R: DNA-dependent RNA polymerase of spinach chloroplasts: characterization of α-like and σ-like polypeptides. Mol Gen Genet 211: 459–464 (1988).

    Article  CAS  Google Scholar 

  71. Lerbs S, Bräutigam E, Parthier B: Polypeptides of DNA-dependent RNA polymerase of spinach chloroplast: characterization by antibody-linked polymerase assay and determination of sites of synthesis. EMBO J 4: 1661–1666 (1985).

    PubMed  CAS  Google Scholar 

  72. Li Y, Sugiura M: Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J 9: 3059–3066 (1990).

    PubMed  CAS  Google Scholar 

  73. Link G: DNA sequence requirements for the accurate transcription of a protein-coded plastid gene in a plastid in vitro system from mustard (Sinapis alba L.). EMBO J 3: 1697–1704 (1984).

    PubMed  CAS  Google Scholar 

  74. Loiseaux-de Goër S, Markowicz Y, Dalmon J, Audren H: Physical maps of the two circular plastid DNA molecules of the brown alga Pylaiella littoralis (L.) Kjellm. Curr Genet 14: 155–162 (1988).

    Article  Google Scholar 

  75. Manning JE, Wolstenholme DR, Ryan RS, Hunter JA, Richards OC: Circular chloroplast DNA from Euglena gracilis. Proc Natl Acad Sci USA 68: 1169–1173 (1971).

    Article  PubMed  CAS  Google Scholar 

  76. Markowicz Y, Loiseaux-de Goër S, Mache R: Presence of a 16S rRNA pseudogene in the bi-molecular plastid genome of the primitive brown alga Pylaiella littoralis. Evolutionary implication. Curr Genet 14: 599–608 (1988).

    Article  PubMed  CAS  Google Scholar 

  77. Matsubayashi T, Wakasugi T, Shinozaki K, Shinozaki KY, Zaita N, Hidaka T, Meng BY, Ohto C, Tanaka M, Kato A, Maruyama T, Sugiura M: Six chloroplast genes (ndh A to F) homologous to human mitochondrial genes encoding components of the respiratory-chain NADH dehydrogenase are actively expressed: determination of the splice-sites in ndh A and ndh B pre- mRNAs. Mol Gen Genet 210: 385–393 (1987).

    Article  PubMed  CAS  Google Scholar 

  78. Mcintosh L, Poulsen C, Bogorad L: Chloroplast gene sequence for the large subunit of ribulose bisphosphate carboxylase of maize. Nature 288: 556–560 (1980).

    Article  CAS  Google Scholar 

  79. Meng BY, Tanaka M, Wakasugi T, Ohme M, Shinozaki K, Sugiura M: Cotranscription of the genes encoding two P700 chlorophyll a apoproteins with the gene for ribosomal protein CS 14: determination of the transcriptional initiation site by in vitro capping. Curr Genet 14: 395–400 (1988).

    Article  PubMed  CAS  Google Scholar 

  80. Michel F, Dujon B: Conservation of RNA secondary structure in two intron families including mitochondrial-, chloroplast- and nuclear-encoded members. EMBO J 2: 33–38 (1983).

    PubMed  CAS  Google Scholar 

  81. Montandon PE, Stutz E: The genes for the ribosomal proteins S12 and S7 are clustered with the gene for the EF-Tu protein on the chloroplast genome of Euglena gracilis. Nucl Acids Res 12: 2851–2859 (1984).

    Article  PubMed  CAS  Google Scholar 

  82. Mullet JE: Chloroplast development and gene expression. Annu Rev Plant Physiol 39: 475–502 (1988).

    Article  CAS  Google Scholar 

  83. Nickelsen J, Link G: Interaction of a 3′ RNA region of the mustard trnK gene with chloroplast proteins. Nucl Acids Res 17: 9637–9648 (1989).

    Article  PubMed  CAS  Google Scholar 

  84. Ohme M, Tanaka M, Chunwongse J, Shinozaki K, Sugiura M: A tobacco chloroplast DNA sequence possibly coding for a polypeptide similar to E. coli RNA polymerase β subunit. FEBS Lett 200: 87–90 (1986).

    Article  PubMed  CAS  Google Scholar 

  85. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574 (1986).

    Article  CAS  Google Scholar 

  86. Orozco EM Jr, Rushlow KE, Dodd JR, Hallick RB: Euglena gracilis chloroplast ribosomal RNA transcription units II. Nucleotide sequence homology between the 16S–23S ribosomal RNA spacer and the 16S ribosomal RNA leader regions. J Biol Chem 255: 10997–11003 (1980).

    PubMed  CAS  Google Scholar 

  87. Palmer JD: Chloroplast DNA exists in two orientations. Nature 301: 92–93 (1983).

    Article  CAS  Google Scholar 

  88. Palmer JD: Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354 (1985).

    Article  PubMed  CAS  Google Scholar 

  89. Pfitzinger H, Weil JH, Pillay DTN, Guillemaut P: Codon recognition mechanisms in plant chloroplasts. Plant Mol Biol 14: 804–814 (1990).

    Google Scholar 

  90. Pillay DTN, Guillemaut G, Weil JH: Nucleotide sequences of three soybean chloroplast tRNAs-Leu and re-examination of bean chloroplast tRNA2-Leu sequence. Nucl Acids Res 12: 2997–3001 (1984).

    Article  PubMed  CAS  Google Scholar 

  91. Plant AL, Gray JC: Introns in chloroplast protein-coding genes of land plants. Photosynth Res 16: 23–39 (1988).

    Article  CAS  Google Scholar 

  92. Reith M, Cattolico RA: Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-l,5-bisphosphate carboxylase and the 32 000-dalton QB protein: phylogenetic implications. Proc Natl Acad Sci USA 83: 8599–8603 (1986).

    Article  PubMed  CAS  Google Scholar 

  93. Rochaix JD, Malnoe P: Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardtii. Cell 15: 661–670 (1978).

    Article  PubMed  CAS  Google Scholar 

  94. Sager R, Ishida MR: Chloroplast DNA in Chlamydomonas. Proc Natl Acad Sci USA 50: 725–730 (1963).

    Article  PubMed  CAS  Google Scholar 

  95. Sager R, Schlanger G: Chloroplast DNA: physical and genetic studies. In: King RC (ed) Handbook of Genetics, vol. 5, pp. 371–423. Plenum Press, New York (1976).

    Chapter  Google Scholar 

  96. Schuster G, Gruissem W: Chloroplast mRNA 3' end processing requires a nuclear-encoded RNA-binding protein. EMBO J 10: 1493–1502 (1991).

    PubMed  CAS  Google Scholar 

  97. Schwarz Z, Kössel H: The primary structure of 16S rDNA from Zea mays chloroplast is homologous to E. coli 10S rRNA. Nature 283: 739–742 (1980).

    Article  CAS  Google Scholar 

  98. Sexton TB, Christopher DA, Mullet JE: Light-induced switch in barley psbD-psbC promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J 9: 4485–4494 (1990).

    PubMed  CAS  Google Scholar 

  99. Shimada H, Fukuta M, Ishikawa M, Sugiura M: Rice chloroplast RNA polymerase genes: the absence of an intron in rpoCl and the presence of an extra sequence in rpoC2. Mol Gen Genet 221: 395–402 (1990).

    Article  PubMed  CAS  Google Scholar 

  100. Shimada H, Sugiura M: Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16: 293–301 (1989).

    Article  PubMed  CAS  Google Scholar 

  101. Shimada H, Sugiura M: Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucl Acids Res 19: 983–995 (1991).

    Article  PubMed  CAS  Google Scholar 

  102. Shinozaki K, Deno H, Sugita M, Kuramitsu S, Sugiura M: Intron in the gene for the ribosomal proteins S16 of tobacco chloroplast and its conserved boundary sequences. Mol Gen Genet 202: 1–5 (1986).

    Article  CAS  Google Scholar 

  103. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Shinozaki, KY, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049 (1986).

    PubMed  CAS  Google Scholar 

  104. Sijben-Müller G, Hallick R, Alt J, Westhoff P, Herrmann RG: Spinach plastid genes coding for initiation factor IF-1, ribosomal protein Sil and RNA polymerase a-subunit. Nucl Acids Res 14: 1029–1044 (1986).

    Article  PubMed  Google Scholar 

  105. Spielmann A, Roux E, von Allmen JM, Stutz E: The soybean chloroplast genome: complete sequence of the rps19 gene, including flanking parts containing exon 2 of rpl 2 (upstream), but lacking rpl 22 (downstream). Nucl Acids Res 16: 1199 (1988).

    Article  PubMed  CAS  Google Scholar 

  106. Steinmetz AA, Castroviejo M, Sayre RT, Bogorad L: Protein PSII-G: an additional component of photosys-tem II identified through its plastid gene in maize. J Biol Chem 261: 2485–2488 (1986).

    PubMed  CAS  Google Scholar 

  107. Stern DB, Gruissem W: Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51: 1145–1157 (1987).

    Article  PubMed  CAS  Google Scholar 

  108. Stern DB, Jones H, Gruissem W: Function of plastid mRNA 3' inverted repeats: RNA stabilization and gene-specific protein binding. J Biol Chem 264: 18742–18750 (1989).

    PubMed  CAS  Google Scholar 

  109. Stern DB, Radwanski ER, Kindle KL: A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3: 285–297 (1991).

    PubMed  CAS  Google Scholar 

  110. Sugita M, Sugiura M: Putative gene of tobacco chloroplast coding for ribosomal protein similar to E. coli ribosomal protein S19. Nucl Acids Res 11: 1913–1918 (1983).

    Article  PubMed  CAS  Google Scholar 

  111. Sugiura M, Torazawa K, Wakasugi T: Chloroplast genes coding for ribosomal proteins in land plants. In: Mache R, Stutz E, Subramanian AR (eds) The Translational Apparatus of Photo synthetic Organelles, pp. 59–69. Springer-Verlag, Berlin (1991).

    Chapter  Google Scholar 

  112. Takaiwa F, Sugiura M: The nucleotide sequence of 4.5S and 5S ribosomal RNA genes from tobacco chloroplasts. Mol Gen Genet 180: 1–4 (1980).

    Article  CAS  Google Scholar 

  113. Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M: Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S10 and spc operons of Escherichia coli. Proc Natl Acad Sci USA 83: 6030–6034 (1986).

    Article  PubMed  CAS  Google Scholar 

  114. Thomas F, Massenet O, Dorne AM, Briat JF, Mache R: Expression of the rpl23, rpl2 and rpsl9 genes in spinach chloroplasts. Nucl Acids Res 16: 2461–2472 (1988).

    Article  PubMed  CAS  Google Scholar 

  115. Turmel M, Boulanger J, Schnare MN, Gray MW, Lemieux C: Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos. J Mol Biol 218: 293–311 (1991).

    Article  PubMed  CAS  Google Scholar 

  116. Wakasugi T, Ohme M, Shinozaki K, Sugiura M: Structures of tobacco chloroplast genes for tRNA-Ile (CAU), tRNA-Leu (CAA), tRNA-Cys (GCA), tRNA-Ser (UGA) and tRNA-Thr (GGU): a compilation of tRNA genes from tobacco chloroplasts. Plant Mol Biol 7: 385–392 (1986).

    Article  CAS  Google Scholar 

  117. Watson JC, Surzycki SJ: Both the chloroplast and nuclear genomes of Chlamydomonas reinhardtii share homology with Escherichia coli genes for transcriptional and translational components. Curr Genet 7: 201–210 (1983).

    Article  CAS  Google Scholar 

  118. Webber AN, Malkin R: Photosystem I reaction-centre proteins contain leucine zipper motifs: a proposed role in dimer formation. FEBS Lett 264: 1–4 (1990).

    Article  PubMed  CAS  Google Scholar 

  119. Westhoff P, Herrmann RG: Complex RNA maturation in chloroplasts: the psbB operon from spinach. Eur J Biochem 171: 551–564 (1988).

    Article  PubMed  CAS  Google Scholar 

  120. Willey DL, Auffret AD, Gray JC: Structure and topology of cytochrome f in pea chloroplast membranes. Cell 36: 555–562 (1984).

    Article  PubMed  CAS  Google Scholar 

  121. Yamada T, Shimaji M: Peculiar feature of the organization of rRNA genes of the Chlorella chloroplast DNA. Nucl Acids Res 14: 3827–3839 (1986).

    Article  PubMed  CAS  Google Scholar 

  122. Ye L, Li Y, Fukami-Kobayashi K, Go M, Konishi T, Watanabe A, Sugiura M: Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains. Nucl Acids Res 19: 6485–6490 (1991).

    Article  PubMed  Google Scholar 

  123. Yokoi F, Tanaka M, Wakasugi T, Sugiura M: The chloroplast gene for ribosomal protein CL23 is functional in tobacco. FEBS Lett 281: 64–66 (1991).

    Article  PubMed  CAS  Google Scholar 

  124. Zaita N, Torazawa K, Shinozaki K, Sugiura M: Trans splicing in vivo: joining of transcripts from the ‘divided’ gene for ribosomal protein S12 in the chloroplasts of tobacco. FEBS Lett 210: 153–156 (1987).

    Article  CAS  Google Scholar 

  125. Zaitlin D, Hu J, Bogorad L: Binding and transcription of relaxed DNA templates by fractions of maize chloroplast extracts. Proc Natl Acad Sci USA 86: 876–880 (1989).

    Article  PubMed  CAS  Google Scholar 

  126. Zurawski G, Bohnert HJ, Whitfeld PR, Bottomley W: Nucleotide sequence of the gene for the MR 32,000 thy-lakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of M R 38,950. Proc Natl Acad Sci USA 79: 7699–7703 (1982).

    Article  PubMed  CAS  Google Scholar 

  127. Zurawski G, Bottomley W, Whitfeld PR: Structure of the genes for the β and ε subunit of spinach chloroplast ATPase indicates a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci USA 79: 6260–6264 (1982).

    Article  PubMed  CAS  Google Scholar 

  128. Zurawski G, Clegg MT: Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 38: 391–418 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robbert A. Schilperoort Leon Dure

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sugiura, M. (1992). The chloroplast genome. In: Schilperoort, R.A., Dure, L. (eds) 10 Years Plant Molecular Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2656-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2656-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5174-3

  • Online ISBN: 978-94-011-2656-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics