Skip to main content

Substrate flow in the rhizosphere

  • Chapter
The Rhizosphere and Plant Growth

Part of the book series: Beltsville Symposia in Agricultural Research ((BSAR,volume 14))

Abstract

The major source of substrates for microbial activity in the ectorhizosphere and on the rhizoplane are rhizodeposition products. They are composed of exudates, lysates, mucilage, secretions and dead cell material, as well as gases including respiratory CO2. Depending on plant species, age and environmental conditions, these can account for up to 40% (or more) of the dry matter produced by plants. The microbial populations colonizing the endorhizosphere, including mycorrhizae, pathogens and symbiotic N2-fixers have greater access to the total pool of carbon including that recently derived from photosynthesis. Utilization of rhizodeposition products induces at least a transient increase in soil biomass but a sustained increase depends on the state of the native soil biomass, the flow of other metabolites from the soil to the rhizosphere and the water relations of the soil. In addition, the phenomena of oligotrophy, cryptic growth, plasmolysis, dormancy and arrested metabolism can all influence the longevity of rhizosphere organisms. With this background, microbial growth in the rhizosphere will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson T-H and Domsch K H 1985 Determination of ecophysiological maintenance requirements of soil microorganisms in a dormant state. Biol. Fertil. Soils 1, 81–89.

    Article  CAS  Google Scholar 

  • Ares J 1976 Dynamics of the root system of blue grama (Bouteloua gracilis (H.S.K.) Lag.). J. Range Manage. 29, 208–213.

    Article  Google Scholar 

  • Barber D A and Lynch J M 1977 Microbial growth in the rhizosphere. Soil Biol. Biochem. 9, 305–308.

    Article  CAS  Google Scholar 

  • Barber D A and Martin J K 1976 The release of organic substances by cereal roots in soil. New Phytol. 76, 69–80.

    Article  CAS  Google Scholar 

  • Barber S A 1971 Effect of tillage practice on corn (Zea mays L.) root distribution and morphology. Agron. J. 63, 724–726.

    Article  Google Scholar 

  • Barneix A J, Breteler H and Van de Geijn S C 1984 Gas and ion exchanges in wheat roots after nitrogen supply. Physiol. Plant 61, 357–362.

    Article  CAS  Google Scholar 

  • Bayne H G, Brown M S and Bethlenfalvay G J 1984 Defoliation effects on mycorrhizal colonization, nitrogen fixation and photosynthesis in the Glycine-Glomus-Rhizobium symbiosis. Physiol. Plant. 62, 576–580.

    Article  CAS  Google Scholar 

  • Bazin M J, Markham P, Scott E and Lynch J M 1990 Microbial interactions in the rhizosphere. In The Rhizosphere. Ed. J. M Lynch, pp 99–127. John Wiley, Chichester.

    Google Scholar 

  • Beck S M and Gilmour C M 1983 Role of wheat root exudates in associative nitrogen fixation. Soil. Biol. Biochem. 15, 33–38.

    Article  Google Scholar 

  • Bildusas I J, Dixon R K, Pfleger F L and Stewart E L 1986 Growth, nutrition and gas exchange of Bromus inermis inoculated with Glomus fasciculatum. New Phytol. 102, 303–311.

    Article  CAS  Google Scholar 

  • Bottner P, Sallih Z and Billies G 1988 Root activity and carbon metabolism in soils. Biol. Fertil. Soils 7, 71–78.

    Article  Google Scholar 

  • Chapman S J and Gray T R G 1981 Endogenous metabolism and macromolecular composition of Arthobacter globifor-mis. Soil Biol. Biochem. 13, 11–18.

    Article  CAS  Google Scholar 

  • Chapman S J and Lynch J M 1985 Some properties of polsaccharides of microorganisms from degraded straw. Enzyme Microb. Technol. 7, 161–163.

    Article  CAS  Google Scholar 

  • Doran J W 1987 Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biol. Fertil. Soils 5, 68–75.

    Article  Google Scholar 

  • Dormaar J F and Sauerbeck D R 1983 Seasonal effects of photoassimilated carbon-14 in the root system of blue grama and associated soil organic matter. Soil Biol. Biochem. 15, 475–479.

    Article  CAS  Google Scholar 

  • Fogel R 1985 Roots as primary producers in below-grown ecosystems. In Ecological Interactions in Soil. Plants, Microbes and Animals. Eds. A H Fitter, D Atkinson, D J Read and M B Usher, pp 23–26. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Fogel R and Hunt G 1983 Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Can. J. For. Res. 12, 219–232.

    Article  Google Scholar 

  • Graham J T, Leonard R T and Menge J A 1981 Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol. 68, 548–552.

    Article  PubMed  CAS  Google Scholar 

  • Gregory P J, McGowan M, Biscoe P V and Hunt B 1978 Water relations of winter wheat. 1. Growth of the root system. J. Agric. Sci. 91, 91–102.

    Article  Google Scholar 

  • Hale M G and Moore L D 1979 Factors affecting root exudation. II: 1970–1978. Adv. Agron. 31, 93–124.

    Article  CAS  Google Scholar 

  • Harris D, Pacovsky R S and Paul E A 1985 Carbon economy of soybean-Rhizobium-Glomus association. New Phytol. 101, 427–440.

    Article  CAS  Google Scholar 

  • Helal H M and Sauerbeck D R 1983 Method to study turnover processes in soil layers of different proximity to roots. Soil Biol. Biochem. 15, 223–225.

    Article  Google Scholar 

  • Helal H M and Sauerbeck D R 1986 Effect of plant roots on carbon metabolism of soil microbial biomass. Z. Pflan-zenernaehr. Bodenkd. 149, 181–188.

    Article  CAS  Google Scholar 

  • Herold A 1980 Regulation of photosynthesis by sink activity-the missing link. New Phytol. 86, 131–144.

    Article  CAS  Google Scholar 

  • Jenkinson D S and Powlson D S 1976 The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8, 209–213.

    CAS  Google Scholar 

  • Jenkinson D S and Powlson D S 1980 Measurement of microbial biomass in intact soil cores and in sieved soil. Soil Biol. Biochem. 12, 579–581.

    Google Scholar 

  • Johnen B G and Sauerbeck D R 1977 A tracer technique for measuring growth, mass and microbial breakdown of plant roots during vegetation. In Soil Organisms as Components of Ecosystems. Eds. V Lohm and T Persson. Proc. VI Int. Soil. Zoo. Coll. Ecol. Bull. Stockholm 25, 366–373.

    Google Scholar 

  • Keith H, Oades J M and Martin J K 1986 Input of carbon to soil from wheat plants. Soil Biol. Biochem. 18, 445–449.

    CAS  Google Scholar 

  • Kleeberger A, Castorph H and Klingmuller W 1983 The rhizosphere microflora of wheat and barley with special reference to Gram negative bacteria. Arch. Microbiol. 136, 306–311.

    Article  Google Scholar 

  • Koch K E and Johnson C R 1984 Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and non-mycorrhizal root systems. Plant Physiol. 75, 26–30.

    Article  PubMed  CAS  Google Scholar 

  • Kraffczyk I, Trolldenier G and Beringer H 1984 Soluble root exudates of maize: influence of potassium supply and rhizosphere micro-organisms. Soil Biol. Biochem. 16, 315–322.

    Article  CAS  Google Scholar 

  • Kucera C L, Dahlman R C and Koelling M R 1967 Total net productivity and turnover on an energy basis for tallgrass prairie. Ecology 48, 536–541.

    Article  Google Scholar 

  • Lambers H 1980 The physiological significance of cyanide-resistant respiration in higher plants. Plant Cell Environ. 3, 293–302.

    Article  CAS  Google Scholar 

  • Lambers H 1987 Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. In Root Development and Function. Eds. P J Gregory, J V Lake and D A Rose, pp 125–145. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lappin-Scott H M, Cusack F, Macleod A and Costerton J W 1988 Starvation and nutrient resuscitation of Klebsiella pneumoniae isolated from oil well waters. J. Appl. Bac-teriol. 64, 541–549.

    Article  CAS  Google Scholar 

  • Lee K J and Gaskins M H 1982 Increased root exudation of 14C-compounds by sorghum seedlings inoculated with nitrogen-fixing bacteria. Plant and Soil 69, 391–399.

    Article  CAS  Google Scholar 

  • Lynch J M 1976 Products of soil micro-organisms in relation to plant growth. CRC Crit. Revs Microbiol. 5, 67–107.

    Article  CAS  Google Scholar 

  • Lynch J M 1986 Rhizosphere microbiology and its manipulation. Biol. Agric. Hort. 3, 143–152.

    Article  Google Scholar 

  • Lynch J M 1989 Development and interactions between microbial communities on the root surface. In Interrelations Between Micro-organisms and Plants in Soil. Eds. V Vancura and F Kunc. pp 5–12. Academic, Prague and Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Lynch J M 1990 Microbial metabolites. In The Rhizosphere. Ed. J M Lynch, pp 177–206. John Wiley, Chichester.

    Google Scholar 

  • Lynch J M and Panting L M 1980a Cultivation and the soil biomass. Soil Biol. Biochem. 12, 29–33.

    Article  Google Scholar 

  • Lynch J M and Panting L M 1980b Variations in the size of the soil biomass. Soil Biol. Biochem. 12, 547–550.

    Article  Google Scholar 

  • Lynch J M and Panting L M 1981 Measurement of the microbial biomass in intact cores of soil. Microbial Ecol. 7, 229–234.

    Article  Google Scholar 

  • Martens R 1985 Limitations in the application of the fumigation technique for biomass estimations in amended soils. Soil Biol. Biochem. 17, 57–63.

    Article  CAS  Google Scholar 

  • Martin J K and Foster R C 1985 A model system for studying the biochemistry and biology of the root-soil interface. Soil Biol. Biochem. 17, 261–269.

    Article  CAS  Google Scholar 

  • Merckz R and Martin J K 1987 Extraction of microbial biomass components from rhizosphere soils. Soil Biol. Biochem. 19, 371–376.

    Article  Google Scholar 

  • Merckz R, Den Hartog A and Van Veen J A 1985 Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol. Biochem. 17, 565–569.

    Article  Google Scholar 

  • Minchin F R, Summerfield R J, Hadley P, Roberts E H and Rawsthorne S 1981 Carbon and nitrogen nutrition of nodulated roots of grain legumes. Plant Cell. Environ. 4, 5–26.

    Article  CAS  Google Scholar 

  • Moore R and McClelen C E 1983 A morphometric analysis of cellular differentiation in the root cap of Zea mays. Am. J. Bot. 70, 611–617.

    Article  Google Scholar 

  • Nelson A H and Sparell L 1976 Acetylene reduction (nitrogen fixation) by Enterobacteriacae isolated from paper mill process waters. Appl. Environ. Microbiol. 32, 197–205.

    Google Scholar 

  • Nelson E B, Chao W-L, Norton J M, Nash G T and Harman G E 1986 Attachment of Enterobacter cloacae to Pythium ultimum hyphae: possible role in the biological control of Phythium pre-emergence damping-off. Phytopathology 76, 327–335.

    Article  Google Scholar 

  • Newman E I 1985 The rhizosphere: carbon sources and microbial populations. In Ecological Interactions in Soil: Plants, Microbes and Animals. Eds. A H Fitter, D Atkinson, D J Read and M B Usher, pp 107–121. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Pate J S, Layzell D B and Atkins C A 1979 Economy of carbon and nitrogen in a nodulated and non-nodulated (NO3-grown) legume. Plant Physiol. 64, 1083–1088.

    Article  PubMed  CAS  Google Scholar 

  • Pirt S J 1975 Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, Oxford, 274 p.

    Google Scholar 

  • Postgate J R and Hunter J R 1962 The survival of starved bacteria. J. Gen. Microbiol. 29, 233–263.

    Article  PubMed  CAS  Google Scholar 

  • Reid C P P, Kidd F A and Ekwebelam S A 1983 Nitrogen nutrition, photosynthesis and carbon allocation in ec-tomycorrhizal pine. Plant and Soil 71, 415–431.

    Article  CAS  Google Scholar 

  • Ryle G J A, Arnott R A, Powell C E and Gordon A J 1983 Comparisons of the respiratory effluxes of nodules and roots in six temperate legumes. Ann. Bot. 52, 469–477.

    Google Scholar 

  • Ryle G J A, Powell C E and Gordon A J 1979 The respiratory costs of nitrogen fixation in soyabean, cowpea and white clover. II. Comparisons of the cost of nitrogen fixation and the utilization of combined nitrogen. J. Exp. Bot. 30, 145–153. Sallih Z and Bottner P 1988 Effect of wheat Triticum aestivum) roots on mineralization rates of soil organic matter. Biol. Fertil. Soils 7, 67–70.

    Google Scholar 

  • Santantonio D 1979 Seasonal dynamics of fine roots in mature stands of Douglas-fir of different water regimes: a preliminary report: In Root Physiology and Symbiosis. Eds. A Reidacker and J Gagnaie-Michard. pp 90–203. Proceedings IUFRO Symposium on Root Physiology and Symbiosis, Nancy France, 1978, Vol. 6. CNRF Cham-penoux, France.

    Google Scholar 

  • Schönwitz R and Ziegler H 1982 Exudation of water-soluble vitamins and of some carbohydrates by intact roots of maize seedlings (Zea mays L.) into a mineral nutrient solution. Z Pflanzenphysiol. 107, 7–14.

    Google Scholar 

  • Sims P L and Singh J S 1971 Herbage dynamics and net primary production in certain ungrazed and grazed grasslands in North America. In Preliminary Analysis of Structure and Function in Grasslands. Ed. N R French, pp 59–124. Range Science Department Science Series No. 10. Colorado State University, Fort Collins, Colorado.

    Google Scholar 

  • Singh J S and Coleman D C 1974 Distribution of photo-assimulated 14carbon in the root system of a shortgrass prairie. J. Ecol. 62, 359–365.

    Article  CAS  Google Scholar 

  • Sivakumar M V K, Taylor H M and Shaw R H 1977 Top and root relations of field-grown soybeans. Agron. J. 69, 470–473.

    Article  Google Scholar 

  • Snellgrove R C, Splittstoesser W E, Stribley D P and Tinker P B 1982 The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol. 92, 75–87.

    Article  Google Scholar 

  • Sparling G P, West A W and Whale K N 1985 Interference from plant roots in the estimation of soil microbial ATP, C, N and P. Soil Biol. Biochem. 17, 275–278.

    Article  CAS  Google Scholar 

  • Wainwright M 1988 Metabolic diversity of fungi in relation to growth and mineral cycling in soil-a review. Trans. Br. mycol. Soc. 90, 159–170.

    Article  CAS  Google Scholar 

  • Warembourg F R and Paul E A 1977 Seasonal transfers of assimilated 14C in grassland: plant production and turnover, soil and plant respiration. Soil Biol. Biochem. 9, 295–301.

    Article  CAS  Google Scholar 

  • Whipps J M 1984 Environmental factors affecting the loss of carbon from the roots of wheat and barley seedlings. J. Exp. Bot. 35, 767–773.

    Article  CAS  Google Scholar 

  • Whipps J M 1985 Effect of CO2 concentration on growth, carbon distribution and loss of carbon from the roots of maize. J. Exp. Bot. 36, 644–651.

    Article  Google Scholar 

  • Whipps J M 1987 Carbon loss from the roots of tomato and pea seedlings grown in soil. Plant and Soil 103, 95–100.

    Article  CAS  Google Scholar 

  • Whipps J M 1990 Carbon economy. In The Rhizosphere. Ed. J M Lynch, pp 59–97. John Wiley, Chichester.

    Google Scholar 

  • Whipps J M and Lynch J M 1983 Substrate flow and utilization in the rhizosphere of cereals. New Phytol. 95, 605–623.

    Article  CAS  Google Scholar 

  • Whipps J M and Lynch J M 1985 Energy losses by the plant in rhizodeposition. Ann. Proc. Phytochem. Soc. Eur. 26, 59–71.

    Google Scholar 

  • Whipps J M and Lynch J M 1986 The influence of the rhizosphere on crop productivity. Adv. Microb. Ecol. 9, 187–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lynch, J.M., Whipps, J.M. (1991). Substrate flow in the rhizosphere. In: Keister, D.L., Cregan, P.B. (eds) The Rhizosphere and Plant Growth. Beltsville Symposia in Agricultural Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3336-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3336-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5473-7

  • Online ISBN: 978-94-011-3336-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics