Skip to main content

End Products of Cometary Evolution: Cometary Origin of Earth-Crossing Bodies of Asteroidal Appearance

  • Chapter
Comets in the Post-Halley Era

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 167))

Abstract

Because there is no necessary connection between the time required to remove the volatile component of a cometary nucleus by solar heating (physical lifetime) and the dynamical lifetime of a comet, it is possible that a comet may evolve into an observable object of asteroidal appearance. Almost all comets have dynamical lifetimes much shorter than their physical lifetimes and in these cases complete loss of volatiles will not occur. Mechanisms do exist, however, whereby a small but significant fraction of comets will have longer dynamical lifetimes, permitting them to evolve first into Jupiter-family short period comets and then into comets with relatively safe decoupled orbits interior to Jupiter’s orbit. Observed Jupiter-family objects of asteroidal appearance (e.g., 1983SA) are much more likely to be of cometary rather than asteroidal origin. “Decoupling” is facilitated by several mechanisms: perturbations by the terrestrial planets, perturbations by Jupiter and the other giant planets (including resonant perturbations) and non-gravitational orbital changes caused by the loss of gas and dust from the comet. The dynamical time scale for decoupling is probably 105–106 years and almost all decoupled comets are likely to be of asteroidal appearance. Once decoupled, the orbits of the resulting Apollo-Amor objects will evolve on a longer (107–108 year) time scale, and the orbital evidence for these objects having originally been comets rather than asteroids will nearly disappear. Statistically, however, a large fraction of the bodies in deep Earth-crossing orbits with semi-major axes ≳ 2.2 AU are likely to be cometary objects in orbits that have not yet diffused into the steady state distribution. For plausible values of the relevant parameters, estimates can be made of the number of cometary Apollo-Amor “asteroids,” the observed number of Earth-crossing active and inactive short period comets, and the production rate of short period comets. These estimates are compatible with other theoretical and observational inferences that suggest the presence of a significant population of Apollo objects that formerly were active comets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, J. R. (1965) The origin of meteorites as small bodies. II. The model, III. General considerations, Astrophys. J. 141, 1536–1556.

    Article  ADS  Google Scholar 

  • Campins, H., A’Hearn, M. F., Schleicher, D. G., and Millis, R. L. (1988) The nucleus of comet P/Tempel 2, Bull. Amer. Astron. Soc. 20 (abstract).

    Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. (1987) The formation and extent of the solar system comet cloud, Astrophys. J. 94, 1330–1338.

    ADS  Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. D. (1988) The origin of short period comets, Astrophys. J. 328, L69–L73.

    Article  ADS  Google Scholar 

  • Everhart, E. (1972) The origin of short period comets, Astrophys. Lett. 10, 131–135.

    ADS  Google Scholar 

  • Everhart, E. (1977) The evolution of comet orbits as perturbed by Uranus and Neptune, in A. H. Delsemme (ed.), Comets, Asteroids, Meteorites University of Toledo, Toledo, pp. 99–104.

    Google Scholar 

  • Fernández, J. A. (1980) On the existence of a cometary belt beyond Neptune, Mon. Not. Roy. Astron. Soc. 192, 481–491.

    ADS  Google Scholar 

  • Fernández, J. A., and W.-H. Ip (1983) On the time evolution of the cometary influx in the region of the terrestrial planets, Icarus 54, 377–387.

    Article  ADS  Google Scholar 

  • Fernández, J. A. (1985) Dynamical capture and physical decay of short-period comets, Icarus 64, 308–319.

    ADS  Google Scholar 

  • Grieve, R. A. F., and Dence, M. R. (1979) The terrestrial cratering record II. The crater production rate, Icarus 38, 230–242.

    Article  ADS  Google Scholar 

  • Havnes, O. (1967) The effect of repeated close approaches to Jupiter on short-period comets, Icarus 12, 331–337.

    Article  ADS  Google Scholar 

  • Hills, J. G. (1981) Comet showers and the steady-state infall of comets from the Oort cloud, Astron. J. 86, 1730–1740.

    Article  ADS  Google Scholar 

  • Lecar, M., and Franklin, F. A. (1973) On the original distribution of the asteroids, I, Icarus 20, 422–436.

    Article  ADS  Google Scholar 

  • Marsden, B. G. (1985) Nongravitational forces on comets: The first fifteen years, in A. Carusi and G. B. Valsecchi (eds.), Dynamics of Comets: Their Origin and Evolution D. Reidel Publ. Co., Dordrecht, pp. 343–352.

    Chapter  Google Scholar 

  • Marsden, B. G. (1986) I.A.U. Catalogue of cometary orbits. Smithsonian Astrophysical Obs., Cambridge, Mass.

    Google Scholar 

  • Milani, A., Hahn, G., Carpino, M., and Nobili, A. M. (1989) Dynamics of planet-crossing asteroids: Classes of orbital behaviour. Project Spaceguard, Icarus 78, 212–269.

    Article  ADS  Google Scholar 

  • Öpik, E. J. (1951) Collision probabilities with the planets and the distribution of interplanetary matter, Proc. Roy. Irish Acad. 54A, 165–199.

    Google Scholar 

  • Öpik, E. J. (1961) The survival of comets and cometary material, Astron. J. 66, 381–382.

    Article  ADS  Google Scholar 

  • Öpik, E. J. (1963) Survival of comet nuclei and the asteroids, Advan. Astron. Astrophys. 2, 219–262.

    Google Scholar 

  • Scholl, H., and Froeschlé, C. H. (1986) The effects of the secular resonances v 16 and v 5 on asteroid orbits, Astron. Astrophys. 170, 134–144.

    Google Scholar 

  • Sekanina, Z. (1969) Dynamical and evolutionary aspects of gradual deactivation and disintegration of short-period comets, Astron. J. 74, 1223–1234.

    Article  ADS  Google Scholar 

  • Sekanina, Z. (1971) A core-mantle model for cometary nuclei and asteroids of possible cometary origin, in T. Gehreis (ed.), Physical Studies of Minor Planets, NASA SP-267, pp. 423–428.

    Google Scholar 

  • Shoemaker, E. M. (1977) Astronomically observable crater-forming projectiles, in D. J. Roddy, R. O. Pepin and R. B. Merrill (eds.), Impact and Explosion Cratering Pergamon Press, New York, pp. 617–628.

    Google Scholar 

  • Shoemaker, E. M., Williams, J. G., Helin, E. F., and Wolfe, R. F. (1979) Earth-crossing asteroids: orbital classes, collision rates with Earth, and origin, in T. Gehreis (ed.), Asteroids, Univ. of Arizona Press, Tucson, pp. 253–282.

    Google Scholar 

  • Shoemaker, E. M., and Wolfe, R. F. (1984) Evolution of the Uranus-Neptune planetesimal swarm, Lunar Planet. Sci. XV, 780–781.

    ADS  Google Scholar 

  • Stagg, C. R., and Bailey, M. E. (1989) Stochastic capture of short-period comets, Mon. Not. Roy. Astron. Soc. In press.

    Google Scholar 

  • Torbett, M. V. (1989) Chaotic motion in a comet disk beyond Neptune: The delivery of short-period comets, Preprint.

    Google Scholar 

  • Weissman, P. R. (1980) Physical loss of long-period comets, Astron. Astrophys. 85, 191–196.

    ADS  Google Scholar 

  • Weissman, P. R. (1986) The Oort cloud and the galaxy, in R. Smoluchowski, J. N. Bahcall and M. S. Matthews (eds.), The Galaxy and the Solar System, Univ. of Arizona Press, Tucson, pp. 204–237.

    Google Scholar 

  • Weissman, P. R., A’Hearn, M. F., McFadden, L. A., and Rickman, H. (1989) Evolution of comets into asteroids, in press, in R. Binzel, T. Gehrels and M. S. Matthews (eds.), Asteroids II, Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Weissman, P. R. (1989) The cometary impactor flux at the Earth. Preprint of ms. submitted to Proceedings of the conference on global catastrophes in Earth history, Snowbird, Utah, October 1988. In press.

    Google Scholar 

  • Wetherill, G. W. (1968a) Dynamical studies of asteroidal and cometary orbits and their relation to the origin of meteorites, in L. H. Ahrens (ed.), Origin and Distribution of the Elements, Pergamon, Oxford, pp. 423–443.

    Google Scholar 

  • Wetherill, G. W. (1968b) Relationships between orbits and sources of chondritic meteorites, in P. Millman (ed.), Meteorite Research, D. Reidel Publ. Co., Dordrecht, pp. 573–589.

    Google Scholar 

  • Wetherill, G. W. (1979) Steady-state population of Apollo-Amor objects, Icarus 37, 96–112.

    Article  ADS  Google Scholar 

  • Wetherill, G. W. (1985) Asteroidal source of ordinary chondrites, Meteoritics 20, 1–22.

    ADS  Google Scholar 

  • Wetherill, G. W. (1987) Dynamic relationships between asteroids, meteorites, and Apollo-Amor objects, Phil. Trans. Roy. Soc. of London A323, 323–337.

    Article  ADS  Google Scholar 

  • Wetherill, G. W. (1988) Where do the Apollo objects come from? Icarus 76, 1–18.

    Article  ADS  Google Scholar 

  • Wetherill, G. W. (1989) Cratering of the terrestrial planets by Apollo objects, Meteoritics 24, 15–22.

    ADS  Google Scholar 

  • Wetherill, G. W., and Williams, J. G. (1968) Evaluation of the Apollo asteroids as sources of stone meteorites, J. Geophys. Res. 73, 635–648.

    Article  ADS  Google Scholar 

  • Wetherill, G. W., and Williams, J. G. (1979) Origin of Differentiated Meteorites, in L. H. Ahrens (ed.), Origin and Distribution of the Elements Pergamon, Oxford, pp. 19–31.

    Google Scholar 

  • Whipple, F. L. (1950) A comet model I. The acceleration of comet Encke, Astrophys. J. 111, 375–394.

    Article  ADS  Google Scholar 

  • Whipple, F. L. (1951) A comet model II. Physical relations for comets and meteors, Astrophys. J. 113, 464–474.

    Article  ADS  Google Scholar 

  • Williams, J. G. (1973) Meteorites from the asteroid belt? (abstract), Eos 54, 233.

    Google Scholar 

  • Williams, J. G. and Faulkner, J. (1981) The positions of secular resonant surfaces, Icarus 46, 390–399.

    Article  ADS  Google Scholar 

  • Wisdom, J. (1983) Chaotic behavior and the origin of the 3/1 Kirkwood gap, Icarus 56, 51–74.

    Article  ADS  Google Scholar 

  • Wisdom, J. (1985) Meteorites may follow a chaotic route to Earth, Nature 315, 731–733.

    Article  ADS  Google Scholar 

  • Yeomans, D. K. (1988) A new look at cometary nongravitational forces, Bull. Am. Astron. Soc. 20, 841–842.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wetherill, G.W. (1991). End Products of Cometary Evolution: Cometary Origin of Earth-Crossing Bodies of Asteroidal Appearance. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds) Comets in the Post-Halley Era. Astrophysics and Space Science Library, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3378-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3378-4_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5494-2

  • Online ISBN: 978-94-011-3378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics