Skip to main content

Sampling with Multiple Objectives and the Role of Spatial Autocorrelation

  • Chapter
Computer assisted vegetation analysis

Part of the book series: Handbook of vegetation science ((HAVS,volume 11))

Abstract

The handling of mixed type multivariate data sets is discussed on an example from the ‘Man and Biosphere’ project, Davos, Switzerland. The data comprise variables of different spatial resolution, aggregation and reliability. Correlo-grams are computed for data subsets describing different landscape features on differing scales. Some variables show spatial independence, others exhibit correlation among adjacent sampling localities. Periodicity is detected in the distribution pattern of some animal species, and soil types form coenoclines. While some results derived by previous modelling reflect local patterns, others suggest wide ranging relevance. Optimum sampling intensity therefore should not only depend on the aims of the study, but be also influenced by the nature of the variables. For investigations with multiple objectives, the simultaneous use of a combination of sampling designs is suggested. Quadrat size, grid width, and even investigation areas may vary. The commensurability of the designs can be achieved by simultaneously running the operations at the different aggregation levels for the relevant variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Besse, L., K. Seidel and O. Kübier. 1982. A large scale multipurpose interactive image processing facility at ETH-Zurich. In: J.L. Mannos (ed.), Design of Digital Image Processing Systems. Proc. SPIE 301: 62–69.

    Google Scholar 

  • Binz, H.R. and O. Wildi. 1988. Das Simulationsmodell MaB-Davos. Schlussberichte zum Schweizerischen MaB-Pro-gramm 33, Bern.

    Google Scholar 

  • Cliff, A.D. and J.K. Ord. 1981. Spatial Processes: Models and Applications, Pion, London.

    Google Scholar 

  • Dutter, R. 1985. Geostatistik, Teubner, Stuttgart. 159 pp.

    Google Scholar 

  • Feoli, E. and P. Ganis. 1986, Autocorrelation for measuring predictivity in community ecology: an example with structural and chorological data from mixed forest types of NE Italy. Coenoses 1: 53–56.

    Google Scholar 

  • Fischer, H. 1990. Simulating distribution of plant communities in an alpine landscape. Coenoses 5: 35–41.

    Google Scholar 

  • Greig-Smith, P. 1983. Quantitative Plant Ecology. 3rd. ed. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Gower, J.C. 1971. Statistical methods of comparing different multivariate analyses of the same data. In: F.R. Hodson, D.G. Kendall and P. Tautu (eds.), Mathematics in the Archeological and Historical Sciences, pp. 138–149. Edinburgh University Press.

    Google Scholar 

  • Keller, M. and K. Seidel. 1984. Influence of snow cover recession on an alpine ecological system. Proc. 18th Intern. Symposium on Remote Sensing of Environment (EIRM), Paris, France, Oct. 1–5: 1931–1936.

    Google Scholar 

  • Legendre, P. and M.-J. Fortin. 1989. Spatial analysis and ecological modelling. Vegetatio 80: 107–138.

    Article  Google Scholar 

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Orlóci, L. 1987. Multivariate Analysis in Vegetation Research. 2nd ed. Junk, The Hague.

    Google Scholar 

  • Silvertown, J. 1980. The dynamics of a grassland ecosystem: Botanical equilibrium in the Park Grass Experiment. Journal of Applied Ecology 17: 491–504.

    Article  Google Scholar 

  • Sokal, R.R. 1986. Spatial data analysis and historical processes. In: Diday, E. et al. (eds.), Data analysis and Informatics, IV, Proceedings of the Fourth International Symposium on Data Analysis and Informatics, Versailles, France, 1985, pp. 29–43. North-Holland, Amsterdam.

    Google Scholar 

  • Upton, G.J.G. and B. Fingleton. 1985. Spatial Data Analysis by Example. Volume 1. Point Pattern and Quantitative Data. Wiley, Chichester.

    Google Scholar 

  • Wildi, O. and K. Ewald (eds.). 1986. Der Naturraum und dessen Nutzung im alpinen Tourismusgebiet von Davos. Ergebnisse des MaB-Projektes Davos. Eidg. Anst. forstl. Versuchswes, Ber. 289.

    Google Scholar 

  • Whittaker, R.H. 1978. Direct gradient analysis. In: R.H. Whittaker (ed.), Ordination of Plant Communities, pp. 7–50. Junk, The Hague.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Feoli L. Orlóci

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wildi, O. (1991). Sampling with Multiple Objectives and the Role of Spatial Autocorrelation. In: Feoli, E., Orlóci, L. (eds) Computer assisted vegetation analysis. Handbook of vegetation science, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3418-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3418-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5512-3

  • Online ISBN: 978-94-011-3418-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics