Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 529))

  • 235 Accesses

Abstract

The essential core of the modern integral equation approach to liquid state theory was arrived at nearly simultaneously in 1960 by a remarkable number of authors working independently [1], They found that the density expansion of the pair distribution function g(r) of a simple fluid with interatomic potential ϕ(r) could be grouped into infinite subsets of diagrams such that

$$ g(r){e^{{\beta \phi (r)}}} = 1 + S(r) + P(r) + B(r) $$
((1))

where, in the pictorial electrical language of M. S. Green [2], the diagrams of the series set S(r) resemble series circuits and those of the parallel set P(r) resemble parallel circuits; the remaining bridge set B(r) begins with a diagram that looks like a Wheatstone bridge. Further, the diagrams of P(r) could be summed in direct space to give P(r) = g(r) exp(βϕ(r)) - 1 - ln[g(r) exp(βϕ(r))], while those of S(r) could be summed in Fourier space to yield S(k) = č2(k)/[l-pc(k)], which is the Ornstein-Zernike (OZ) equation in Fourier transform representation. Here, c(r) = h(r) - S(r) is the sum of non-nodal graphs, or direct correlation function, while h(r) = g(r) - 1 is the total correlation function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).

    Google Scholar 

  2. M. S. Green, J. Chem. Phys. 43, 1403 (1960). The parallel set P(r) of this paper is not the same as that of Eq. (1).

    Article  ADS  Google Scholar 

  3. J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Vol. 1.

    MATH  Google Scholar 

  5. F. Lado, Phys. Rev. E 54, 4411 (1996).

    ADS  Google Scholar 

  6. B. D’Aguanno and R. Klein, Phys. Rev. A 46, 7652 (1992) and private communication.

    Article  Google Scholar 

  7. F. J. Rogers and D. A. Young, Phys. Rev. 30A, 999 (1984).

    Article  ADS  Google Scholar 

  8. F. Lado, J. Chem. Phys. 108, 6441 (1998).

    Article  ADS  Google Scholar 

  9. J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 73, 352 (1994).

    Article  ADS  Google Scholar 

  10. J. S. Høye and G. Stell, J. Chem. Phys. 73, 461 (1980).

    Article  ADS  Google Scholar 

  11. L. R. Pratt, Mol. Phys. 40, 347 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  12. F. Lado, Phys. Rev. E 55, 426 (1997).

    Article  ADS  Google Scholar 

  13. See, for example, G. Arfken, Mathematical Methods for Physicists (Academic, Orlando, 1985), Chap. 9.

    Google Scholar 

  14. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 1662ff.

    MATH  Google Scholar 

  15. F. Lado, Mol. Phys. 47, 283 (1982).

    Article  ADS  Google Scholar 

  16. E. L. Pollock and B. J. Alder, Phys. Rev. Lett. 39, 299 (1977).

    Article  ADS  Google Scholar 

  17. F. Lado, Phys. Rev. A 8, 2548 (1973).

    Article  ADS  Google Scholar 

  18. Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 1208 (1979).

    ADS  Google Scholar 

  19. F. Lado, Phys. Lett. 89A, 196 (1982).

    ADS  Google Scholar 

  20. N. I. Akhiezer, The Classical Moment Problem (Hafner, New York, 1965), Chap. 1.

    Google Scholar 

  21. F. Lado, E. Lomba, and M. Lombardero, J. Chem. Phys. 108, 4530 (1998).

    Article  ADS  Google Scholar 

  22. The computed results for α0 = 0 in Table 3 are obtained using the simpler algorithm for nonpolarizable dipolar systems described some time ago [25]. They are included here for completeness.

    Google Scholar 

  23. M. S. Wertheim, Mol. Phys. 26, 1425 (1973).

    Article  ADS  Google Scholar 

  24. E. L. Pollock, B. J. Alder, and G. N. Patey, Physica 108A, 14 (1981).

    ADS  Google Scholar 

  25. F. Lado, M. Lombardero, E. Enciso, S. Lago, and J. L. F. Abascal, J. Chem. Phys. 85, 2916 (1986).

    Article  ADS  Google Scholar 

  26. F. Lado, J. Chem. Phys. 106, 4707 (1997).

    Article  ADS  Google Scholar 

  27. E. L. Pollock and B. J. Alder, Phys. Rev. Lett. 41, 903 (1978).

    Article  ADS  Google Scholar 

  28. E. L. Pollock, B. J. Alder, and L. R. Pratt, Proc. Natl. Acad. Sci. USA 77, 49 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lado, F. (1999). Fluids with Internal Degrees of Freedom. In: Caccamo, C., Hansen, JP., Stell, G. (eds) New Approaches to Problems in Liquid State Theory. NATO Science Series, vol 529. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4564-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4564-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5671-4

  • Online ISBN: 978-94-011-4564-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics