Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 535))

Abstract

Photocalorimetry is here considered as an extension of classical calorimetry for the study of light induced processes. The basic principles of this method are discussed. An overview of the main instruments and techniques used is presented. A few examples of applications to organic and inorganic reactions in solution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teixeira, C. and Wadsö, I. (1994) Solution photocalorimeters, Netsu Sokutei 21, 29–39.

    Google Scholar 

  2. Magee, J. L., DeWitt, T. W., Smith, E. C. and Daniels, F. (1939) A photocalorimeter. The quantum efficiency of photosynthesis in algae, J. Am. Chem. Soc. 61, 3529–3533.

    Article  CAS  Google Scholar 

  3. Magee, J. L. and Daniels, F. (1940) The heat of photobromination of the phenyl methanes and cinnamic acid, and the influence of oxygen, J. Am. Chem. Soc. 62, 2825–2833.

    Article  CAS  Google Scholar 

  4. Wadsö, I. (1995) Microcalorimetric techniques for investigation of living plant materials, Thermochimica Acta 250, 285–304.

    Article  Google Scholar 

  5. Johansson, P. and Wadsö, I. (1997) A photo-microcalorimetric system for studies of plant tissues, J. Biochem. Biophys. Met. 35, 103–114.

    Article  CAS  Google Scholar 

  6. Johansson, P. and Wadsö, I. (1998) Design and testing of an isothermal microcalorimetric reaction vessel, submitted.

    Google Scholar 

  7. Johansson, P. (1998) Towards More Specific Microcalorimetric Studies. with Special Emphasis on Biological Systems, PhD. Thesis, Division of Thermochemistry, Lund University, Sweden.

    Google Scholar 

  8. Johansson, P. (1998) Kinetic and thermodynamic experiments with a multifunctional microcalorimetric vessel, submitted.

    Google Scholar 

  9. Schaarschmidt, B. and Lamprecht, I. (1973) UV-irradiation and measuring of the optical density of microorganisms in a microcalorimeter, Experientia 29, 505–506.

    Article  CAS  Google Scholar 

  10. Schaarschmidt, B. and Lamprecht, I. (1986) Simultaneous measurements of heat production and optical density in oscillating reactions, Thermochim. Acta 105, 205–213.

    Article  CAS  Google Scholar 

  11. Lamprecht, I., Schaarschmidt, B. and Plesser, Th. (1987) Extended batch calorimetry on periodic chemical reactions, Thermochim. Acta 119, 175–187.

    Article  CAS  Google Scholar 

  12. Wendlant, W. W. and Stranahan, J. (1976) A combined titration calorimeter and fixed wavelength calorimeter, Thermochim. Acta 17, 295–300.

    Article  Google Scholar 

  13. Mcllvaine, P. and Langerman, N. (1977) A calorimetric investigation of the growth of the luminescent bacteria beneckea harveyi and photobacterium leiognathi, Biophys. J. 17, 17–25.

    Article  Google Scholar 

  14. Langerman, N. (1978) The simultaneous determination of heat changes and light production, Methods in Enzymology LVII, 540–549.

    Article  Google Scholar 

  15. Timpe, H. J., Strehmel, B., Roch, F. H. and Fritzsche, K., Lichtinduzierte polymer und polymerisationsreaktionen (1987) Acta Polymerica 38, 238–244.

    Google Scholar 

  16. Theweleit, E. and Kunze, W. (1987) Method und anwendung der photokalorimetrie (methods and applications of photocalorimetry), Kunstoffe 77, 870–873.

    CAS  Google Scholar 

  17. Appelt, B. K. and Abadie, M. J. M. (1985) Thermal analysis of photocurable materials, Polym. Eng. Sci. 25, 931–935.

    Article  CAS  Google Scholar 

  18. Abadie, M. J. M. and Appelt, B. K. (1988) Photocalorimetric study of photosensitive materials, Bull. Soc. Chim. Fr. 1, 20–24.

    Google Scholar 

  19. Sastre, R., Conde, M. and Mateo, J. L. (1988) Photoinitiated bulk polymerization of lauryl acrylate by n-acetyl-4-nitro-1-naphthylamine in the presence of n, n-dimethylaniline, J. Photochem. Photobiol 44, 111–122.

    Article  CAS  Google Scholar 

  20. Sastre, R., Conde, M., Catalina, F. and Mateo, J. L. (1989) Desarrollo de un nuevo fotocalorimetro aplicable al estudio de polimeros fotosensibles, Revista de Plasticos Modernos 393, 375–383.

    Google Scholar 

  21. Thomas, L. C. (1987) How well does your photopolymer cure?, Res. Dev. 29, 86–90.

    CAS  Google Scholar 

  22. Cattiaux, J. (1988) Differential photocalorimetric analysis: a new technique for characterization of photosensitive materials, Analusis 16, 31–33.

    Google Scholar 

  23. Cox, R. J. (1988) Photocalorimetric investigation in solid films, Polym. Prep. (Am. Chem. Soc. Div. Polym. Chem.) 29, 122–123.

    CAS  Google Scholar 

  24. Fischer, E. and Soreau, M. (1988) Photocalorimetry: methods and applications, Analusis 16, 34–37.

    Google Scholar 

  25. Perkin-Elmer, Dupont, and Thermal Analysis instruments are a few examples of commercial DPC photocalorimeters.

    Google Scholar 

  26. Tasaki, I. and Iwasa, K. (1981) Temperature changes associated with nerve excitation: detection by using polyvinylidene fluoride film, Biochem. Biophys. Res. Commun. 101, 172–176.

    Article  CAS  Google Scholar 

  27. Tasaki, I. and Nakaye, T. (1985) Heat generated by the dark-adapted squid retina in response to light pulses, Science 227, 654–655.

    Article  CAS  Google Scholar 

  28. Tasaki, I. and Nakaye, T. (1986) Heat produced by the dark-adapted bullfrog retina in response to light pulses, Biophys. J. 50, 285–293.

    Article  CAS  Google Scholar 

  29. Hagins, W. A., Ross, P. D., Tate, R., L. and Yoshikami, S. (1989) Transduction heats in retinal rods: Tests of the role of cGMP by pyroelectric calorimetry, Proc. Natl. Acad. Sci. USA 86, 1224–1228.

    Article  CAS  Google Scholar 

  30. Birge, R. R. and Cooper, T. M. (1986) Energy storage in the primary step of the photocycle of bacteriorhodopsin, Biophys. J. 42, 61–69.

    Article  Google Scholar 

  31. Birge, R. R., Cooper, T. M., Lawrence, A. F., Masthay, M. B., Vasilakis, C., Zhang, C. F. and Zidovetzki, R. (1989) A spectroscopic, photocalorimetric, and theoretical investigation of the quantum efficiency of the primary event in bacteriorhodopsin., J. Am. Chem. Soc. 111, 4063–4074.

    Article  CAS  Google Scholar 

  32. Klassen, J. K., Selke, M., Sorensen, A. A. and Yang, G. K. (1990) Metal-ligand bond dissociation energies in CpMn(CO2)L complexes, J. Am. Chem. Soc, 112, 1267–1268.

    Article  CAS  Google Scholar 

  33. Yang, P. F. and Yang, G. K. (1992) Haloalkanes as ligands. Spectroscopic and energetic studies of CpMn(CO)2XR, J. Am. Chem. Soc. 114, 6937–6938.

    Article  CAS  Google Scholar 

  34. Hester, D. M., Sun, J., Harper, A. W. and Yang, G. K. (1992) Characterization of the energy surface for oxidative addition of silanes to CpMn(CO2)(Heptane), J. Am. Chem. Soc. 114, 5234–5240.

    Article  CAS  Google Scholar 

  35. Rappich, J. and Dohrmann, J. K. (1990) Competitive photoelectrochemical processes as studied by in situ photocalorimetry: competition between the photoanodic oxidation of a solute (CI, Br, H2O2, SO3 2−) and that of water in some n-type TiO2 electrodes, J. Phys. Chem. 94, 7735–7739.

    Article  CAS  Google Scholar 

  36. Dohrmann, J. K. and Schaaç N.-S. (1992) Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry, J. Phys. Chem. 96, 4558–4563.

    Article  CAS  Google Scholar 

  37. Posten, P. E. and Harris, J. M. (1990) Excited-state calorimetry studies of triplet benzophenone using time-resolved photothermal beam deflection spectroscopy, J. Am. Chem. Soc. 112, 644–650.

    Article  Google Scholar 

  38. Juhl, A. and Bimberg, D. (1988) Calorimetric absorption and transmission spectroscopy for determination of quantum efficiencies and characterization of ultrathin layers and nonradiative centers, J. Appl. Phys. 64, 303–309.

    Article  CAS  Google Scholar 

  39. Geraghty, P., Wixom, M. and Francis, A., H. (1984) Photocalorimetric spectroscopy and ac calorimetry of thin surface films, J. Appl Phys. 55, 2780–2785.

    Article  CAS  Google Scholar 

  40. Atkinson, R. (1985) Development of a wavelength scanning laser calorimeter, Applied Optics 24, 464–471.

    Article  CAS  Google Scholar 

  41. Seybold, P.G., Gouterman, M. and Callis, J. (1969) Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes, Photochem. Photobiol 9, 229–242.

    Article  CAS  Google Scholar 

  42. Mardelli, M. and Olmsted III, J. (1977) Calorimetric determination of the 9, 10-diphenyl-anthracene fluorescence quantum yield, J. Photochem. 7, 277–285.

    Article  CAS  Google Scholar 

  43. Magde, D., Brannon, J. H., Cremers, T. L. and Olmsted III, J. (1979) Absolute luminescence yield of cresyl violet. A standard for the red, J. Phys. Chem. 83, 696–699.

    Article  CAS  Google Scholar 

  44. Olmsted III, J. (1979) Photon flux measurements using calorimetry, Rev. Sci. Instr. 50, 1256–1259.

    Article  CAS  Google Scholar 

  45. Olmsted III, J. (1980) Photocalorimetric studies of singlet oxygen reactions, J. Am. Chem. Soc. 102, 66–71.

    Article  CAS  Google Scholar 

  46. Adamson, A. W., Vogler, A., Kunkely, H. and Wachter, R. (1978) Photocalorimetry. Enthalpies of photolysis of trans-azobenzene, ferrioxalate and cobaltioxalate ions, chromium hexacarbonyl, and dirhenium decarbonyl, J. Am. Chem. Soc. 100, 1298–1300.

    Article  CAS  Google Scholar 

  47. Nakashima, M. and Adamson, A. W. (1982) Photocalorimetry. 2. enthalpies of ligand substitution reactions of some group 6 metal carbonyl complexes in solution, J. Phys. Chem. 86, 2905–2909.

    Article  CAS  Google Scholar 

  48. Nakashima, M. and Adamson, A. W. (1982) Photocalorimetry. 3. enthalpies of substitution reactions of some Cr(III) ammines and Cr(III) and Co(III) cyano complexes in aqueous solution, J. Phys. Chem. 86, 2910–2912.

    Article  CAS  Google Scholar 

  49. Harel, Y. and Adamson, A.W., (1986) Photocalorimetry. 4. enthalpies of substitution reactions of rhodium(III) and iridium(III) pentaamine halides and of ruthenium(II) hexaamine, J. Phys. Chem. 90, 6690–6693.

    Article  CAS  Google Scholar 

  50. Harel, Y. and Adamson, A.W., (1986) Photocalorimetry. 5. enthalpies of reaction of M2(CO)10 (M=Mn, Re) compounds with iodine in cyclohexane solution at 25°C, J. Phys. Chem. 90, 6693–6696.

    Article  CAS  Google Scholar 

  51. Harel, Y., Adamson, A. W., Kutal, C., Grutsch, P. A. and Yasufuku, K. (1987) Photocalorimetry. 6. enthalpies of isomerization of norbornadiene and of substituted norbornadienes to corresponding quadricyclenes, J. Phys.Chem. 91, 901–904.

    Article  CAS  Google Scholar 

  52. Wachter, R. (1991) Private communication. Physical Chemistry Department, University of Regensburg, Germany.

    Google Scholar 

  53. Winkler, M. G. (1987) Die Photokalorimetrische Bestimmung der Bindungsenthalpien von Carbonylcomplexen der VI Nebengruppe, PHD Thesis, Naturwiss. Fak., Univ.Regensburg, FRG.

    Google Scholar 

  54. Cooper, A. and Converse, C. A. (1976) Energetics of primary processes in visual excitation: photocalorimetry of rhodopsin in rod outer segment membranes, Biochemistry 15, 2970–2978.

    Article  CAS  Google Scholar 

  55. Cooper, A. (1979) Energy uptake in the first step of visual excitation, Nature 282, 531–533.

    Article  CAS  Google Scholar 

  56. Cooper, A. (1982) Calorimetric measurements of light-induced processes, Methods in Enzymology 88, 667–673.

    Article  CAS  Google Scholar 

  57. Cooper, A. (1979) Energetics of rhodopsin and isorhodopsin, FEBS Lett. 100, 382–384.

    Article  CAS  Google Scholar 

  58. Cooper, A., Dixon, S. F. and Tsuda, M. (1986) Photoenergetics of octopus rhodopsin. Convergent evolution of biological photon counters?, Eur. Biophys. J. 13, 195–201.

    Article  CAS  Google Scholar 

  59. Teixeira, C. and Wadsö, I. (1990) A microcalorimetric vessel for photochemical processes in solution, J. Chem. Thermodyn. 22, 703–713.

    Article  CAS  Google Scholar 

  60. Bäckman, P., Bastos, M., Briggner, L.-E., Hägg, S., Hallén, D., Lönnbro, P., Nilsson, S.-O., Olofeson, G., Schön, A., Suurkuusk, J., Teixeira, C. and Wadsö, I. (1994) A system of microcalorimeters, Pure & Appl. Chem. 66, 375–382; references cited therein.

    Article  Google Scholar 

  61. Dias, A. R., Diogo, H., Minas da Piedade, M. E., Simoni, J. A., Martinho Simöes, J. A., Teixeira, C., Meng-Yan, Y. and Pilcher, G. (1992) Enthalpies of formation of cis-and trans-azobenzene, J. Chem. Thermodyn. 24, 439–447.

    Article  CAS  Google Scholar 

  62. Dias, P. B., Teixeira, C., Dias, A. R., Simoni, J. A. and Martinho Simões, J. A., (1994) Photomicrocalorimetry: photosubstitution of carbonyl by phosphites in the complex Mn(η5-C5H4CH3XCO)3, J. Organomet. Chem. 482, 111–118.

    Article  CAS  Google Scholar 

  63. Santana, A. (1994). Microcalorimetria e fotocalorimetria. Algumas aplicações, Centro de Química Estrutural, Institute Superior Técnico, Lisboa, Portugal.

    Google Scholar 

  64. Silva, E. (1994) Microcalorimetria defluxo de calor e fotocalorimetria. Centro de Química Estrutural, Institute Superior Técnico and Institute Tecnológico para a Europa Comunitária, Lisboa, Portugal.

    Google Scholar 

  65. Almada, S. (1994) Microcalorimetria de fluxo de calor e fotocalorimetria. Centro de Química Estrutural, Institute Superior Técnico and Institute Tecnológico para a Europa Comunitária, Lisboa, Portugal.

    Google Scholar 

  66. Ferreira da Silva, P. (1996) Termoquímica defosfinas e de complexos organometálicos, PhD. Thesis, Centro de Química Estrutural, Institute Superior Técnico, Lisboa, Portugal.

    Google Scholar 

  67. Ribeiro da Silva, M. D. (1994) Técnicas Calorimétricas, Química, (Boletim da Sociedade Portuguesa de Química) 53, 63–68.

    CAS  Google Scholar 

  68. Nilsson, S.-O. (1986) A thermochemical study of interactions between water and some hydrocarbons, alcohols and esters, PhD Thesis, Division of Thermochemistry, Lund University, Sweden.

    Google Scholar 

  69. Schön, A. (1987) Microcalorimetric studies of the energetics of mammalian cells, PhD. Thesis, Division of Thermochemistry, Lund University, Sweden.

    Google Scholar 

  70. Wadsö, I. (1993) On the accuracy of results from microcalorimetric measurements on cellular systems, Thermochim. Acta 219, 1–15.

    Article  Google Scholar 

  71. Wadsö, I. (1992) Isothermal microcalorimetry — A versatile tool for the industrial laboratory, Indian J. Techn. 30, 537–544.

    Google Scholar 

  72. Head A. J. and Sabbah, R. (1987) Enthalpy in K. N. Marsh and P. A. G. O’Hare, (eds.) Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Scientific Publications, Oxford, 290.

    Google Scholar 

  73. Cordfunke, E. H. P. and Ouweltjes (1994), Solution calorimetry for the determination of enthalpies of reaction of inorganic substances at 298.15 K. in K. N. Marsh and P. A. G. O’Hare, (eds.) Experimental Thermodynamics — Vol. TV: Solution Calorimetry, Blackwell Scientific Publications, Oxford, 25–42.

    Google Scholar 

  74. Wadsö, I. (1966) Calculation methods in reaction calorimetry, Science Tools 13, 33–39.

    Google Scholar 

  75. Sturtevant, J. M. (1976) Calorimetry in A. Weissberger and B. V. Rossiter (eds.) Physical Methods of Chemistry, Vol 1, Part V, Wiley, New York, 523–654.

    Google Scholar 

  76. Suurkuusk, J. and Wadsö, I. (1982) A multichannel microcalorimetric system, Chem. Scripta 20, 155–163.

    CAS  Google Scholar 

  77. Görman, N. M., Laynez, J., Schön, A., Suurkuusk, J. and Wadsö, I. (1984) Design and testing of a new microcalorimetric vessel for use with living cellular systems and in titration experiments, J. Biochem. Biophys. Methods, 10, 187–202.

    Article  Google Scholar 

  78. TAM, Thermal Activity Monitor for highly sensitive isothermal analysis, ThermoMetric Catalog (Multichannel Isothermal Microcalorimetry).

    Google Scholar 

  79. TAM, Thermal Activity Monitor, ThermoMetric instructions booklet.

    Google Scholar 

  80. Kuhn, H. J., Braslavsky, S. E. and Schmidt, R. (1989) Chemical actinometry, Pure & Appl. Chem. 61, 187–210.

    Article  CAS  Google Scholar 

  81. Hatchard, C. G. and Parker, C. A. (1956) A new sensitive chemical actinometer II. Potassium ferrioxalate as a standard chemical actinometer, Proc. Roy. Soc. London A235, 518–536.

    Google Scholar 

  82. Rabek, J. F. (1982) Experimental Methods in Photochemistry and Photophysics, Wiley, New York, 944.

    Google Scholar 

  83. Dürr, H. (1989) Perpectives in photochromism: a novel system based on the 1,5-electrocyclization of heteroanalogous pentadienyl anions, Angew. Chem. Int. Ed. Engl. 28, 413–431.

    Article  Google Scholar 

  84. Schulze, F.-W., Petrick, H.-J., Cammenga, H. K. and Klinge, H. (1977) Thermodynamic properties of the structural analogues benzo[c]cinnoline, trans-azobenzene and cis-azobenzene, Z Phys. Chem. 107, 1–19.

    Article  CAS  Google Scholar 

  85. Dias, P. B., Minas da Piedade, M. E. and Martinho Simões, J. A. (1994) Bonding and energetics of phosphorus(III) ligands in transition metal complexes, Coord. Chem. Rev. 135/136, 737–807 and references cited therein.

    Article  CAS  Google Scholar 

  86. Almada, S., Santana, A., Silva, E., Teixeira, C. and Vogler, A. (1994) Fotocalorimetria: aplicaçäo ao estudo de reacçöes fotoquimícas. Metil-cobalamina, XIV Encontro Nacional da Sociedade Portuguesa de Química, Univ. Aveiro.

    Google Scholar 

  87. Almada, S., Santana, A., Silva, E., Teixeira, C. and Vogler, A. (1996) Photomicrocalorimetry: Photolysis of Methylohalamin, S4-29a05, 14 th IUP AC Conference on Chemical Thermodynamics, August 25–30, Osaka, Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Teixeira, C. (1999). Photocalorimetry. In: Minas da Piedade, M.E. (eds) Energetics of Stable Molecules and Reactive Intermediates. NATO Science Series, vol 535. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4671-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4671-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5741-4

  • Online ISBN: 978-94-011-4671-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics