Skip to main content

Coupling Between Cerebral Blood Flow and Metabolism in the Primate: Methodological and Pharmacological Issues

  • Chapter
Positron Emission Tomography: A Critical Assessment of Recent Trends

Part of the book series: NATO ASI Series ((ASHT,volume 51))

Abstract

The concept of coupling between cerebral blood flow (CBF), metabolism and function was enunciated as early as 1890 by Roy and Sherrington, as follows: “We conclude then that the chemical products of cerebral metabolism contained in the lymph which bathes the walls of the arterioles of the brain can cause variations of the calibre of the cerebral vessels: that in this re-action the brain possesses an intrinsic mechanism by which its vascular supply can be varied locally in correspondence with local variations of functional activity.” However, this hypothesis remained to be tested until techniques for measurements of regional CBF and metabolism were available. A major step in this issue was achieved by the development of autoradiogra phic methods which allows the measurement of local CBF with tracers such as [131I]trifluoroiodomethane [1] or [14C]iodoantipyrine [2]. The tight relationship between regional CBF and function was demonstrated by measuring specific increases in CBF after experimentally induced local increases in functional activity that are restricted to a few defined neuroanatomical areas [3]. As an example, olfactory stimulation specifically enhanced the cerebral glucose metabolism (CMRGlu), as measured by the [14C]deoxyglucose technique, in the brain regions from the olfactory system [3]. With the advent of non invasive techniques such as positron emission tomography (PET) and, more recently, functional magnetic resonance imaging (MRI), such studies have become increasingly possible in man [4, 5]. From this succint historical description, it is evident that advances in our understanding of the relationships between CBF, metabolism and function are completely dependent on the technological progress in the measurement of each of these parameters. Such developments include improvement not only in their spatial but also in their temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landau, W.M., Freygang, W.H., Rowland, L.P., Sokoloff, L. and Kety, S.S. (1955) The local circulation of the living brain: values in the unanaesthetized and anaesthetized cat, Trans Am Neurol Assoc 80,125–129.

    Google Scholar 

  2. Sakurada, O., Kennedy, C., Jehle, J., Brown, J.D., Carbin, G. and Sokoloff, L. (1978) Measurement of local cerebral blood flow with iodo-14C-antipyrine, Am J Physiol 234,H59–H66.

    PubMed  CAS  Google Scholar 

  3. Sokoloff, L. (1977) Relation between physiological function and energy metabolism in the central nervous system, JNeurochem 29,13–26.

    Article  CAS  Google Scholar 

  4. Raichle, M.E., Grubb, R.L., Gado, M.H., Eichling, J.O. and Ter-Pogossian, M.M. (1979) Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man, Arch Neurol 33,523–526.

    Google Scholar 

  5. Prichard, J.W., and Rosen, B.R. (1994) Functional study of the brain by NMR, J Cereb Blood Flow Metab 14,365–372.

    Article  PubMed  CAS  Google Scholar 

  6. Sokoloff, L. (1981) Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system, Federation Proc 40,2311–2316.

    CAS  Google Scholar 

  7. Klein, B., Kuschinsky, W., Schröck, H. and Vetterlein, F. (1986) Inter-dependency of local capillary density, blood flow and metabolism in rats brain? Am J Physiol 251,H1333–H1340.

    PubMed  CAS  Google Scholar 

  8. Lund Madsen, P., Hasselbalch, S.G., Hagemann, L P, Skovgaard Olsen, K., Bülow, J., Holm, S., Wildschiodtz, G., Paulson, O.B. and Lassen, N.A. (1995) Persistent resetting of the cerebral oxygen /glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15,485–491.

    Article  Google Scholar 

  9. Kimura, A., Sato, A. and Takano, Y. (1990) Stimulation of the nucleus basalis of Meynert does not influence glucose utilization of the cerebral cortex in anaesthetized rats. Neurosci Lett 119,101–104.

    Article  PubMed  CAS  Google Scholar 

  10. Fox, P.T. and Raichle, M.E. (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects, Proc Natl Acad Sci USA 83,1140–1144.

    Article  PubMed  CAS  Google Scholar 

  11. Seitz, R.J., and Roland, P.E. (1992) Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study, Acta Neurol Scand 86,60–67.

    Article  PubMed  CAS  Google Scholar 

  12. Fox, P.T., Raichle, M.E., Mintum, M.A. and Dence, C. (1988) Nonoxidative glucose consumption during focal physiologic neural activity, Science 241,462–464.

    Article  PubMed  CAS  Google Scholar 

  13. Ueki, M., Linn, F. and Hossmann, K. (1988) Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain, J Cereb Blood Flow Metab 8,486–494.

    Article  PubMed  CAS  Google Scholar 

  14. Magistretti, P.J. and Pellerin, L. (1996) Cellular bases of brain energy metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes, Cereb Cortex 6,50–61.

    Article  PubMed  CAS  Google Scholar 

  15. Hossmann, K., Schmidt-Kastner, R. and Grosse-Ophoff, B. (1987) Recovery of integrative central nervous function after one hour global cerebro-circulatory arrest in normothermic cat, JNeurol Sci 77,305–320.

    Article  CAS  Google Scholar 

  16. Lou, H.C., Edvinsson, L. and MacKenzie, E.T. (1987) The concept of coupling blood flow to brain function: revision required?, Ann Neurol 22,289–297.

    Article  PubMed  CAS  Google Scholar 

  17. Wahl, M., and Schilling, L. (1993) Regulation of cerebral blood flow - A brief review, Acta Neurochir 59,3–10.

    CAS  Google Scholar 

  18. Lassen, N.A. (1959) Cerebral blood flow and oxygen consumption in man, Physiol Rev 39,183–238.

    PubMed  CAS  Google Scholar 

  19. Niwa, K., Lindauer, U., Villringer, A. and Dimagl, U. (1993) Blockade of nitric oxide synthsesis in rats strongly attenuates the CBF response to extracellular acidosis. J Cereb Blood Flow Metab 13,535–539.

    Article  PubMed  CAS  Google Scholar 

  20. Villringer, A., and Dimagl, U. (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging, Cerebrovasc Brain Metab Rev 7,240–276.

    PubMed  CAS  Google Scholar 

  21. Paulson, O.B., and Newman, E.A. (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow?, Science 237,896–898.

    Article  PubMed  CAS  Google Scholar 

  22. Dimagl, U., Niwa, K., Lindauer, U. and Villringer, A. (1994) Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide, Am J Physiol 267,H296–H301.

    Google Scholar 

  23. Northington, F.J., Matherne, G.P., Coleman, S.D. and Berne, R.M. (1992) Sciatic nerve stimulation does not increase endogenous adenosine production in sensory-motor cortex, J Cereb Blood Flow Metab 12,835–843.

    Article  PubMed  CAS  Google Scholar 

  24. Pickard, J.D. (1981) Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism, J Cereb Blood Flow Metab 1,361–384.

    Article  PubMed  CAS  Google Scholar 

  25. Schaad, N.C., Magistretti, P.J. and Schorderet, M. (1991) Prostanoids and their role in cell-cell interactions in the central nervous system, Neurochem Int 18,303–322.

    Article  PubMed  CAS  Google Scholar 

  26. Pickard, J.D., and MacKenzie, E.T. (1979) Inhibition of prostaglandin synthesis and the response of baboon to cerebral circulation to carbon dioxide, Nature (New Biol) 245187–188.

    Google Scholar 

  27. Wang, Q., Paulson, O.B.and Lassen, N.A. (1993) Indomethacin abolishes cerebral blood flow increase in response to acetazolamide-induced extracellular acidosis: a mechanism for its effect on hypercapnia?, J Cereb Blood Flow Metab 13, 724–727.

    Article  PubMed  CAS  Google Scholar 

  28. McCulloch, J., Kelly, P.A.T., Grome, J.J. and Pickard, J.D. (1982) Local cerebral circulatory and metabolic effects of indomethacin, Am J Physiol 243,H416–H423.

    PubMed  CAS  Google Scholar 

  29. Nowicki, J.-P., Jourdain, D. and MacKenzie, E.T. (1987) NADH fluorescence in vivo: changes in cerebral oxidative metabolism and perfusion induced by pentobarbital, indomethacin and salicylate. J Cereb Blood Flow Metab 7,280–288.

    Article  PubMed  CAS  Google Scholar 

  30. Schumann, P., Touzani, O., Young, A.R., Verard, L., Morello, R. and MacKenzie, E.T. (1996) Effects of indomethacin on cerebral blood flow and oxygen metabolism: a positron emission tomographic investigation in the anaesthetized baboon, Neurosci Lett 220,1–5

    Article  Google Scholar 

  31. Frackowiak, R.S.J., Lenzi, G.L., Jones, T. and Heather, J.D. (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure and normal values, J Comput Assist Tomogr 4,727–736.

    Article  PubMed  CAS  Google Scholar 

  32. Goadsby, P.J., Kaube; H. and Hoskin, K.L. (1992) Nitric oxide couples cerebral blood flow and cerebral metabolism, Brain Res 595,167–170.

    CAS  Google Scholar 

  33. Iadecola, C., Pelligrino, D.A., Moskowitz, M.A. and Lassen, N.A. (1994) Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 14175–192.

    Article  PubMed  CAS  Google Scholar 

  34. Kelly, P.A.T., Ritchie, I. and Arbuthnott, G.W. (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole: effects upon local cerebral blood flow and glucose use in the rat, J Cereb Blood Flow Metab 15,766–773.

    Article  PubMed  CAS  Google Scholar 

  35. Cholet, N., Bonvento, G. and Seylaz, J. (1996) Effects of neuronal NO synthase inhibition on the cerebral vasodilatory response to somatosensory stimulation, Brain Res 708,797–200.

    Article  Google Scholar 

  36. Reis D.J. and Iadecola C. (1989) Central neurogenic regulation of cerebral blood flow, in J. Seylaz and P. Sercombe (eds.), Neurotransmission and Cerebrovascular Function II, Elsevier Science,.Amsterdam, pp.369–390.

    Google Scholar 

  37. Woods, B.T. (1988) Metabolic advantage of neuronal coupling of regional brain activity and blood flow. Ann Neurol 23,629–630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schumann, P., MacKenzie, E.T. (1998). Coupling Between Cerebral Blood Flow and Metabolism in the Primate: Methodological and Pharmacological Issues. In: Gulyás, B., Müller-Gärtner, H.W. (eds) Positron Emission Tomography: A Critical Assessment of Recent Trends. NATO ASI Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4996-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4996-9_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6097-4

  • Online ISBN: 978-94-011-4996-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics