Skip to main content

Latent Variable Models

  • Chapter
Learning in Graphical Models

Part of the book series: NATO ASI Series ((ASID,volume 89))

Abstract

A powerful approach to probabilistic modelling involves supplementing a set of observed variables with additional latent, or hidden, variables. By defining a joint distribution over visible and latent variables, the corresponding distribution of the observed variables is then obtained by marginalization. This allows relatively complex distributions to be expressed in terms of more tractable joint distributions over the expanded variable space. One well-known example of a hidden variable model is the mixture distribution in which the hidden variable is the discrete component label. In the case of continuous latent variables we obtain models such as factor analysis. The structure of such probabilistic models can be made particularly transparent by giving them a graphical representation, usually in terms of a directed acyclic graph, or Bayesian network. In this chapter we provide an overview of latent variable models for representing continuous variables. We show how a particular form of linear latent variable model can be used to provide a probabilistic formulation of the well-known technique of principal components analysis (PCA). By extending this technique to mixtures, and hierarchical mixtures, of probabilistic PCA models we are led to a powerful interactive algorithm for data visualization. We also show how the probabilistic PCA approach can be generalized to non-linear latent variable models leading to the Generative Topographic Mapping algorithm (GTM). Finally, we show how GTM can itself be extended to model temporal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. New York: John Wiley.

    MATH  Google Scholar 

  2. Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Annals of Mathematical Statistics34, 122–148.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartholomew, D. J. (1987). Latent Variable Models and Factor Analysis. London: Charles Griffin & Co. Ltd.

    MATH  Google Scholar 

  4. Basilevsky, A. (1994). Statistical Factor Analysis and Related Methods. New York: Wiley.

    Book  MATH  Google Scholar 

  5. Bishop, C. M. (1995). Neural Networks for Pattern Recognition Oxford University Press.

    Google Scholar 

  6. Bishop, C. M., G. E. Hinton, and I. G. D. Strachan (1997). GTM through time. In Proceedings IEE Fifth International Conference on Artificial Neural Networks Cambridge, U.K., pp. 111–116.

    Chapter  Google Scholar 

  7. Bishop, C. М. and G. D. James (1993). Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nuclear Instruments and Methods in Physics Research A327, 580–593.

    Article  Google Scholar 

  8. Bishop, C. M., M. Svensén, and C. K. I. Williams (1997a). GTM: the generative topographic mapping. Accepted for publication in Neural Computation. To appear in volume 10, number 1. Available as NCRG/96/015 from http://www.ncrg.aston.ac.uk/.

  9. Bishop, C. M., M. Svensén, and C. K. I. Williams (1997b). Magnification factors for the GTM algorithm. In Proceedings IEE Fifth International Conference on Artificial Neural Networks, Cambridge, U.K., pp. 64–69.

    Chapter  Google Scholar 

  10. Bishop, C. M. and M. E. Tipping (1996). A hierarchical latent variable model for data visualization. Technical Report NCRG/96/028, Neural Computing Research Group, Aston University, Birmingham, UK. Accepted for publication in IEEE PAMI.

    Google Scholar 

  11. Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B 39(1), 1–38.

    MathSciNet  MATH  Google Scholar 

  12. Hinton, G. E., P. Dayan, and M. Revow (1997). Modeling the manifolds of images of handwritten digits. IEEE Transactions on Neural Networks 8(1), 65–74.

    Article  Google Scholar 

  13. Hinton, G. E., C. K. I. Williams, and M. D. Revow (1992). Adaptive elastic models for hand-printed character recognition. In J. E. Moody, S. J. Hanson, and R. P. Lippmann (Eds.), Advances in Neural Information Processing Systems, Volume 4, pp. 512–519. Morgan Kauffman.

    Google Scholar 

  14. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology24, 417–441.

    Article  Google Scholar 

  15. Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence16, 550–554.

    Article  Google Scholar 

  16. Jordan, M. I. and R. A. Jacobs (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation6 (2), 181–214.

    Article  Google Scholar 

  17. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics43, 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kohonen, T. (1995). Self-Organizing Maps. Berlin: Springer-Verlag.

    Book  Google Scholar 

  19. Krzanowski, W. J. and F. H. C. Marriott (1994). Multivariate Analysis Part I: Distributions, Ordination and Inference. London: Edward Arnold.

    MATH  Google Scholar 

  20. Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Sixth Series2, 559–572.

    Article  Google Scholar 

  21. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE77 (2), 257–285.

    Article  Google Scholar 

  22. Rao, C. R. (1955). Estimation and tests of significance in factor analysis. Psychometrika20, 93–111.

    Article  MathSciNet  MATH  Google Scholar 

  23. Rubin, D. B. and D. T. Thayer (1982). EM algorithms for ML factor analysis. Psychometrika 47 (1), 69–76.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tipping, M. E. and C. M. Bishop (1997a). Mixtures of probabilistic principal component analysers. Technical Report NCRG/97/003, Neural Computing Research Group, Aston University, Birmingham, UK. Submitted to Neural Computation.

    Google Scholar 

  25. Tipping, M. E. and C. M. Bishop (1997b). Probabilistic principal component analysis. Technical report, Neural Computing Research Group, Aston University, Birmingham, UK. Submitted to Journal of the Royal Statistical Society, B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bishop, C.M. (1998). Latent Variable Models. In: Jordan, M.I. (eds) Learning in Graphical Models. NATO ASI Series, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5014-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5014-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6104-9

  • Online ISBN: 978-94-011-5014-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics