Skip to main content

Fertility-Regulating Mechanisms and Their Manipulation

  • Chapter
Breeding Field Crops
  • 773 Accesses

Abstract

The extent to which a crop species will set seed is an important concern with which the plant breeder must deal. Either failure to be self-fertile or failure to be cross-fertile, depending upon the breeding system of the particular species involved, may curtail procedures for obtaining gene recombinations and limit seed production. Normally, self-pollinated species, such as wheat, oats, barley, rice, and soybeans, and some cross-pollinated species, such as corn, set seed freely after self-pollination, or after cross-pollination between genotypes within the species. Many cross-pollinated species, such as the clovers, alfalfa, sweetclover, rye, sugar beets, and many perennial grasses, have reduced seed set, or fail to set seed, after self-pollination, although they may set seed freely after cross-pollination with other strains within the species. In addition to the problem of obtaining seeds after self- and cross-pollinations within the species, the plant breeder is concerned about the extent to which seeds will be set when crosses are made with plants in closely related species, or closely related genera. Fertility in interspecific crosses is important because it will determine how extensively desirable genes from closely related species may be utilized in a recombination-breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anderson, I. C. (1971). Possible practical applications of chemical pollen control in corn and sorghum seed production. Proc. 26th Ann. Corn Sorghum Res. Conf. American Seed Trade Association, Washington, D.C.

    Google Scholar 

  • Anderson, M. K., Taylor, N. L., and Kirthavip, R. (1972). Development and performance of double-cross hybrid red clover. Crop Sci. 12: 240–242.

    Article  Google Scholar 

  • Barrons, K. C. (1971). Possibilities for development of pollen control agents for corn and sorghum. Proc. 26th Ann. Corn Sorghum Res. Conf. American Seed Trade Association, Washington, D.C.

    Google Scholar 

  • Bashaw, E. C. (1975). Problems and possibilities of apomixis in the improvement of tropical forage greases. In “Tropical Forages in Livestock Production Systems” ( E. C. Doll and G. O. Mott, eds.). American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Bashaw, E. C. (1980). Apomixis and its application in crop improvement. In “Hybridization of Crop Plants” ( W. R. Fehr and H. H. Hadley, eds.). American Society of Agronomy and Crop Science Society of America, Madison, WI.

    Google Scholar 

  • Bashaw, E. C., Hovin, A. W., and Holt, E. C. (1970). Apomixis, its evolutionary significance and utilization in plant breeding. Proc. 11th Int. Grassland Congr. (Queensland). Univ. of Queensland Press, St. Lucia, Australia.

    Google Scholar 

  • Beckett, J. B. (1971). Classification of male-sterile cytoplasms in maize (Zea mays L.). Crop Sci. 11: 724–727.

    Google Scholar 

  • Burton, G. W., and Hanna, W. W. (1982). Stable cytoplasmic male-sterile mutants induced in Tift 23DB1 pearl millet with mitomycin and streptomycin. Crop Sci. 22: 651–652.

    Article  Google Scholar 

  • Burton, G. W., and Hart, R. H. (1967). Use of self-incompatibility to produce commercial seed-propagated F1 bermudagrass hybrids. Crop Sci. 7: 524–527.

    Article  Google Scholar 

  • Cochran, D. E. (1975). Progress of cytoplasmic and genetic sterility in hybrid seed corn production. Proc. 30th Annu. Corn Sorghum Res. Conf. American Seed Trade Association, Washington, D.C.

    Google Scholar 

  • de Nettancourt, D. (1977). “Incompatibility in Angiosperms.” Monogr. Theoret. Appl. Genet. 3. Springer-Verlag, Berlin.

    Google Scholar 

  • Duvick, D. N. (1965). Cytoplasmic pollen sterility in corn. Ado. Genet. 13: 1–56.

    Article  Google Scholar 

  • Edwardson, J. R. (1970). Cytoplasmic male sterility. Bot. Rev. 36: 341–420.

    Article  Google Scholar 

  • Frankel, R., and Galun, E. (1977). “Pollination Mechanisms, Reproduction, and Plant Breeding.” Monogr. Theoret. Appl. Genet. 2. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Gowers, S. (1974). The production of F1 hybrid swedes (Brassica napus ssp. Rapifera) by the utilisation of self-incompatibility. Euphytica 23: 205–208.

    Article  Google Scholar 

  • Gracen, V. E., and Grogan, C. O. (1974). Diversity and suitability for hybrid production of different sources of cytplasmic male sterility in maize. Agron. J. 66: 654–657.

    Article  Google Scholar 

  • Hadley, H. H., and Openshaw, S. J. (1980). Interspecific and intergeneric hybridization. In “Hybridization of Crop Plants” ( W. R. Fehr and H. H. Hadley, eds.). American Society of Agronomy and Crop Science Society of America, Madision, WI.

    Google Scholar 

  • Hermsen, J. G. Th. (1978). General considerations on interspecific hybridization. In “Interspecific Hybridization in Plant Breeding” (E. Sanchez-Monge and F. Garcia-Olmedo, eds.). Proc. 8th Congr. EUCARPIA, Madrid, Spain, 1977. Universidad Politecnica de Madrid.

    Google Scholar 

  • Heslop-Harrison, J., Heslop-Harrison, Y., and Barber, J. (1975). The stigma surface in incompatibility responses. J. Roy. Soc. (London) Ser. B 188: 287–297.

    Article  Google Scholar 

  • Hockett, E. A., and Eslick, R. F. (1968). Genetic male sterility in barley. I. Nonallelic genes. Crop Sci. 8: 218–220.

    Article  Google Scholar 

  • Hockett, E. A., Eslick, R. F., Reid, D. A., and Wiebe, G. A. (1968). Genetic male sterility in barley. II. Available spring and winter stocks. Crop Sci. 8: 754–755.

    Article  Google Scholar 

  • Hovin, A. W., and Buckner, R. C. (1966). Interspecific and intergeneric hybridization in breeding of Festuca arundinacea. Proc. 10th Int. Grassland Congr. (Helsinki). Finnish Grassland Association, Helsinki.

    Google Scholar 

  • Jones, H. A., and Clarke, A. E. (1943). Inheritance of male sterility in the onion and the production of hybrid seed. Proc. Am. Soc. Hort. Sci. 43: 189–194.

    Google Scholar 

  • Lacadena, J. R. (1974). Interspecific gene transfer in plant breeding. In “Interspecific Hybridization in Plant Breeding” (E. Sanchez-Monge and F. Garcia-Olmedo, eds.). Proc. 8th Congr. EUCARPIA, Madrid, Spain, 1977. Universidad Politecnica de Madrid.

    Google Scholar 

  • Laible, C. A. (1974). Chemical methods for pollen control. Proc. 29th Annu. Corn Sorghum Res. Conf. American Seed Trade Association, Washington, D.C.

    Google Scholar 

  • Leffel, R. C. (1963). Pseudo-self-compatibility and segregation of gametophytic self-incompatibility alleles in red clover, Trifolium pratense L. Crop. Sci. 3: 377–380.

    Article  Google Scholar 

  • Leffel, R. C., and Muntjan, A. I. (1970). Pseudo-self-compatibility in red clover (Trifolium pratense L.). Crop Sci. 10: 655–658.

    Article  Google Scholar 

  • Lewis, D. (1954). Comparative incompatibility in angiosperms and fungi. Ado. Genet. 6: 235–285.

    Article  Google Scholar 

  • Livers, R. W. (1964). Fertility restoration and its inheritance in cytoplasmic male-sterile wheat. Science 144: 420.

    Article  Google Scholar 

  • Lundqvist, A. (1955). Genetics of self-incompatibility in Festuca pratensis Huds. Hereditas 41: 518–520.

    Google Scholar 

  • Lundqvist, A. (1961). The genetic control of incompatibility in Lolium perenne L. Hereditas 47: 542–562.

    Article  Google Scholar 

  • Lundqvist, A. (1965). The genetics of incompatibility. In “Genetics Today” (S. J. Geerts, ed.). Proc. 11th Int. Congr. Genet. 3. Pergamon Press, New York.

    Google Scholar 

  • Maan, S. S., and Lucken, K. A. (1972). Interacting male sterility-male fertility restoration systems for hybrid wheat research. Crop Sci. 12: 360–364.

    Article  Google Scholar 

  • Meyer, V. G., and Meyer, J. R. (1964). Cytoplasmic effects on the differentiation of anthers and ovules of cotton. Am. J. Bot. 51: 693–696.

    Article  Google Scholar 

  • Nakanishi, T., and Hinata, K. (1975). Self-seed production by CO2 gas treatment in self-incompatible cabbage. Euphytica 24: 117–120.

    Article  Google Scholar 

  • Odland, M. L., and Noll, C. J. (1950). The utilization of cross-compatibility and self-incompatibility in the production of F1 hybrid cabbage. Proc. Am. Soc. Hort. Sci. 55: 391–402.

    Google Scholar 

  • Oldemeyer, R. K. (1957). Sugarbeet male sterility. J. Am. Soc. Sugar Beet Technol. 9: 381–386.

    Article  Google Scholar 

  • Owen, F. V. (1945). Cytoplasmically inherited male-sterility in sugarbeets. J. Agric. Res. 71: 423–440.

    Google Scholar 

  • Owen, F. V. (1952). Mendelian male sterility in sugarbeets. Proc. Am. Soc. Sugarbeet Technol. 7: 371–376.

    Google Scholar 

  • Ramanna, M. S. (1978). Problems on interspecific hybridization and its prospects for the improvement of the cultivated potato, Solanum tuberosum L. In “Interspecific Hybridization in Plant Breeding” (E. Sanchez-Monge and F. Garcia-Olmedo, eds.). Proc. 8th, Congr. EUCARPIA, Madrid, Spain, 1977. Universidad Politecnica de Madrid.

    Google Scholar 

  • Roath, W. W., and Hockett, E. A. (1971). Genetic male sterility in barley. III. Pollen and anther characteristics. Crop Sci. 11: 200–203.

    Article  Google Scholar 

  • Scheifele, G. L. (1970). Cytoplasmically inherited susceptibility to diseases as related to cytoplasmically controlled pollen sterility in maize. Proc. 25th Annu. Corn Sorghum Res. Conf. American Seed Trade Association, Washington, D.C.

    Google Scholar 

  • Schertz, K. F. (1973). Possible new cytoplasmic-genic sterility systems in sorghum. Proc. 28th Annu. Corn Sorghum Res. Conf. American Seed Trade Association, Washington, D.C.

    Google Scholar 

  • Sears, E. R. (1976). Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10: 31–51.

    Article  Google Scholar 

  • Sharma, H. C., and Gill, B. S. (1983). Current status of wide hybridization in wheat. Euphytica 32: 17–31.

    Article  Google Scholar 

  • Stephens, J. C., and Holland, R. F. (1954). Cytoplasmic male-sterility for hybrid sorghum seed production. Agron. J. 46: 20–23.

    Article  Google Scholar 

  • Stout, A. B. (1938). The genetics of incompatibilities in homomorphic flowering plants. Bot. Rev. 4: 275–366.

    Article  Google Scholar 

  • Taliaferro, C. M., and Bashaw, E. C. (1966). Inheritance and control of obligate apomixis in breeding buffelgrass, Pennisetum ciliare. Crop. Sci. 6: 473–476.

    Article  Google Scholar 

  • Thompson, K. F. (1964). Triple-cross hybrid kale. Euphytica 13: 173–177.

    Google Scholar 

  • Townsend, C. E. (1968). Self-incompatibility studies with diploid alsike clover, Trifolium hybridum L. III. Response to temperature. Crop Sci. 8: 269–272.

    Article  Google Scholar 

  • Williams, R. D., and Williams, W. (1947). Genetics of red clover (Trifolium pratense L.). Compatibility. III. The frequency of incompatibility S alleles in two non-pedigree populations of red clover. J. Genet. 48: 69–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poehlman, J.M. (1987). Fertility-Regulating Mechanisms and Their Manipulation. In: Breeding Field Crops. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7271-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7271-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7273-6

  • Online ISBN: 978-94-015-7271-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics