Skip to main content

Ultrasonic Scattering Properties of Blood

  • Chapter
Intravascular Ultrasound

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 143))

Abstract

Since biological tissues are complex structures consisting of cells of different sizes and of different composition interspersed among which are blood vessels carrying blood to and from these cellular structures and ductal networks, it is of no surprise to find that the fundamental ultrasonic scattering structures in a majority of the tissues are still unknown [1,2]. Blood, on the other hand, because of its simple biological composition, was the first biological tissue on which ultrasonic scattering measurements were made [3–6]. These efforts raised more questions than answered. Since then, a large body of data to better understand ultrasonic scattering phenomenon in blood has been acquired and will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenleaf JF. Tissue characterization with ultrasound. Boca Raton: CRC Press, 1986.

    Google Scholar 

  2. Shung KK, Thieme GA. Ultrasonic scattering in biological tissues. Boca Raton: CRC Press, 1993.

    Google Scholar 

  3. Atkinson P, Berry BM. Random noise in ultrasonic echoes diffracted by blood. J Phys A Math Nucl Gen 1974;7:1293–302.

    Article  Google Scholar 

  4. Shung KK, Sigelmann RA, Reid JM. Ultrasonic scattering by blood. IEEE Trans Biomed Eng 1976;BME-23:460–67.

    Article  PubMed  CAS  Google Scholar 

  5. Shung KK, Sigelmann RA, Reid, JM. Angular dependence of scattering of ultrasound from blood. IEEE Trans Biomed Eng 1977;BME-24:325–31.

    Article  PubMed  CAS  Google Scholar 

  6. Borders SE, Fronek A, Kemper WS, Franklin, D. Ultrasonic energy backscattered from blood, an experimental determination of the variation of sound energy with hematocrit. Ann Biomed Eng 1978;6:83–92.

    Article  PubMed  CAS  Google Scholar 

  7. Yock PG, Johnson EL, Linker, DT. Intravascular ultrasound: development and clinical potential. Am J Cardiac Imaging 1988;2:185–93.

    Google Scholar 

  8. Pandian NG. Intravascular and intracardiac ultrasound imaging: an old concept, now on the road to reality. Circ 1989;4; 1091–93.

    Article  Google Scholar 

  9. Bom N, Roelandt J. Intravascular ultrasound, techniques, developments, clinical perspectives. Dordrecht: Kluwer, 1989.

    Book  Google Scholar 

  10. Albritton EC. Standard values in blood. Philadelphia: Saunders, 1953.

    Google Scholar 

  11. Oscar M, Schalam DVM. Veterinary Hematology. Philadelphia: Lea & Febiger, 1961.

    Google Scholar 

  12. Chien S. Biophysical behavior of red cells in suspensions. In: Surgenor DM, editor. The red blood cell, vol II, 2nd ed. New York: Academic Press, 1975: 1031–133.

    Google Scholar 

  13. Angelsen BAJ. Theoretical study of the scattering of ultrasound from blood. IEEE Trans Biomed Eng 1980;27: 61–7.

    Article  PubMed  CAS  Google Scholar 

  14. Lucas RJ, Twersky V. Inversion of ultrasonic scattering data for red blood cell suspensions under different flow conditions. J Acoust Soc Am 1987;82:794–9.

    Article  PubMed  CAS  Google Scholar 

  15. Mo LYL, Cobbold RSC. A unified approach to modelling the backscattered Doppler ultrasound from blood. IEEE Trans Biomed Eng 1992;39:450–61.

    Article  PubMed  CAS  Google Scholar 

  16. Berger NE, Lucas RJ, Twersky V. Polydisperse scattering theory and comparisons with data for red blood cells. J Acoust Soc Am 1991;89: 1394–401.

    Article  PubMed  CAS  Google Scholar 

  17. Yuan YW, Shung KK. Ultrasonic backscatter from flowing whole blood. II dependence on frequency and fibrinogen concentration. J Acoust Soc Am 1988; 84: 1195–200.

    Article  PubMed  CAS  Google Scholar 

  18. Shung KK, Yuan YW, Fei DY, Tarbell JM. Effect of flow disturbance on ultrasonic backscatter from blood. J Acoust Soc Am 1984;75:1265–72.

    Article  PubMed  CAS  Google Scholar 

  19. Yuan YW, Shung KK. Ultrasonic backscatter from flowing whole blood. I.-dependence on shear rate and hematocrit. J Acoust Soc Am 1988;84:52–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kuo IY, Shung KK. High frequency ultrasonic scattering from erythrocyte suspensions. Submitted to IEEE Trans Biomed Eng for publication.

    Google Scholar 

  21. Varadan W, Varadan VK. Low frequency expansions for acoustic scattering using Waterman’s T-matrix method. J Acoust Soc Am 1979;66:586–9.

    Article  Google Scholar 

  22. Lord Rayleigh. The theory of sound. New York: Dover, 1945.

    Google Scholar 

  23. Roos MS, Apfel RE, Wardlaw SC. Application of 30 Mhz acoustic scattering to the study of human red blood cells. J Acoust Soc Am 1988;83:1639–44.

    Article  PubMed  CAS  Google Scholar 

  24. Shung KK, Reid JM. The effect of hypotonicity upon the ultrasonic scattering properties of erythrocytes. In White DN, Lyons EA, editors. Ultrasound in medicine, vol. 4. New York: Plenum Press, 1978 1: 567–70.

    Article  Google Scholar 

  25. Ahuja AS. Effect of particle viscosity on propagation of sound in suspensions and emulsions. J Acoust Soc Am 1972;51:182–6.

    Article  Google Scholar 

  26. Nassiri DK, Hill CR. The differential and total bulk scattering cross sections of some human and animal tissues. J Acoust Soc Am. 1986;79:2034–47.

    Article  PubMed  CAS  Google Scholar 

  27. Brody, WR, Meindl JD. Theoretical analysis of the CW Doppler ultrasonic flowmeter. IEEE Trans Biomed Eng 1974;BME-21: 183–92.

    Article  PubMed  CAS  Google Scholar 

  28. Hottingger CF, Meindl JD. Blood flow measurement using the attenuation-compensated volume flowmeter. Ultrasonic Imag 1979;1: 1–15.

    Article  Google Scholar 

  29. Shung KK, Cloutier G, Lim C. The effect of hematocrit, shear rate, and turbulence on ultrasonic Doppler spectrum from blood. IEEE Trans Biomed Eng 1992;BME-39;462–9.

    Article  PubMed  CAS  Google Scholar 

  30. Boynard M, Leilierve JC, Guillet R. Aggregation of red cells studied by ultrasound backscattering. Biorheol 1987;24:451–61.

    CAS  Google Scholar 

  31. Sigel B. Machi J, Beitler JC, Justin JR. Red Cell aggregation as a cause of blood-flow echogenicity. Radiol 1983;148:799–802.

    CAS  Google Scholar 

  32. Kallio T, Alanen A. A new ultrasonic technique for quantifying blood echogenicity. Invest Radiol 1988;23:832–5.

    Article  PubMed  CAS  Google Scholar 

  33. Yamada EG, Fitzgerald PJ, Sudhir K, Hargrave VK, Yock PG. Intravascular ultrasound imaging of blood: the effect of hematocrit and flow on backscatter. J Am Soc Echocardiogr 1992;5:385–92.

    PubMed  CAS  Google Scholar 

  34. Mahoney C, Ferguson J, Fischer PLC. Red cell aggregation and the echogencity of whole blood. Ultrasound Med Biol 1992;18:579–86.

    Article  Google Scholar 

  35. Shung KK, Reid JM. Ultrasonic instrumentation in hematology. Ultrasonic Imag 1979;1:280–94.

    Article  CAS  Google Scholar 

  36. Thompson RS, Trudinger BJ, Cook CM. Doppler ultrasound waveforms in the fetal umbilical artery: quantitative analysis technique. Ultrasound Med Biol 1985;11:707–18.

    Article  PubMed  CAS  Google Scholar 

  37. Luckman NP, Evans JM, Skidmore R, Baker JD, Wells PNT. Backscattered power in Doppler signals. Ultrasound Med Biol 1987;13:L669–70.

    Article  Google Scholar 

  38. Bascom PAJ, Routh HF, Cobbold RSC. Interpretation of power changes in Doppler signals from human blood-in vitro studies. McAvoy RB, editor. 1988 IEEE Ultrasonics Symp Proc 1988: 985–88.

    Google Scholar 

  39. De Kroon MGM, Slager CJ, Gussenhoven WJ, Serruys PW, Roelandt JRT, Bom N. Cyclic changes of blood echogenicity in high-frequency ultrasound. Ultrasound Med Biol 1991;17:723–28.

    Article  PubMed  Google Scholar 

  40. Cloutier G, Shung KK. Cyclic variation of Doppler scattering power from porcine blood in a pulsatile flow model. McAvoy RB, editor. 1991 IEEE Ultrasonics Symp Proc 1991: 1301–03.

    Google Scholar 

  41. Cloutier G, Shung KK. Cyclic variation of the power of ultrasonic Doppler signals backscattered by polystyrene microspheres and porcine erythrocyte suspensions. Submitted to IEEE Trans Biomed Eng for publication.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shung, K.K., Kuo, I.Y., Cloutier, G. (1993). Ultrasonic Scattering Properties of Blood. In: Roelandt, J., Gussenhoven, E.J., Bom, N. (eds) Intravascular Ultrasound. Developments in Cardiovascular Medicine, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8210-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8210-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4281-1

  • Online ISBN: 978-94-015-8210-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics