Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 31))

  • 191 Accesses

Abstract

In the foregoing we have studied the motion of particles. Strictly speaking, the term point mass should have been used instead of particle, in order to emphasize the theoretical nature of the concept. A point mass represents a finite mass of infinitesimal volume. Reality comes close to it in many cases. Even a huge body such as the earth, can be looked upon as a point mass, for example when its fundamental motion about the sun is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  1. Christoffersen, Jes, “When is a Moment Conservative?”, DCAMM Report 374, Lyngby, (1988).

    Google Scholar 

  2. Greenwood, Donald T., “Principles of Dynamics”, Prentice-Hall, (1988).

    Google Scholar 

  3. Goldstein, Herbert, “Classical Mechanics”, Addison-Wesley, (1978).

    Google Scholar 

  4. Liu, Yan-Zhu, “Gyrodynamics” (in Chinese), Science Press, Beijing, (1986).

    Google Scholar 

  5. Magnus, K., “Kreisel”,Springer-Verlag, (1971).

    Google Scholar 

  6. Merkin, D.P., “Gyroscopic Systems” (in Russian), Nauka, Moskva, (1974).

    Google Scholar 

  7. Mikhailov, G.K.; Schmidt, G.; Sedov, L.I., “Leonhard Euler und das Entstehen der klassischen Mechanik”, ZAMM 64, (1984), 73–82

    Article  MathSciNet  MATH  Google Scholar 

  8. Rimrott, F.P.J., “Introductory Attitude Dynamics”, Springer-Verlag, (1988).

    Google Scholar 

  9. Rimrott, F.P.J.; Szczygielski, W.M., “Attitude Diagrams for Torque-free Gyros”, Transactions of CSME 17, (1993), 45–65

    Google Scholar 

  10. Rimrott, F.P.J., Szczygielski, W.M., Tabarrok, B., “Kinetic Energy and Complementary Kinetic Energy in Gyrodynamics”, Transactions of ASME Journal of Applied Mechanics 60, (1993), 398–405

    Article  MATH  Google Scholar 

  11. Truesdell, C., “Die Entwicklung des Drallsatzes”, ZAMM 44, (1964), 149–158

    Article  MathSciNet  MATH  Google Scholar 

  12. Wittenburg, J., “Dynamics of Systems of Rigid Bodies”, B.G. Teubner, (1977).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tabarrok, B., Rimrott, F.P.J. (1994). Rigid Body Dynamics. In: Variational Methods and Complementary Formulations in Dynamics. Solid Mechanics and Its Applications, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8259-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8259-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4422-8

  • Online ISBN: 978-94-015-8259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics