Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 304))

Abstract

One of the most important parameters affecting unsaturated flow in ordinary concrete is the degree of water saturation of the pore system. The available pore volume for fluid transport is reduced by the moisture content inside the pores. This investigation showed that, if no chemical reactions occur, the reduction of the absorption rate of fluids in concrete specimens with increasing degree of water saturation is the same function of the water saturation independent of the fluid type. The penetration depth of the fluids in concrete was determined by thermal imaging after splitting the concrete specimens. This method allows the fluid distribution inside the specimens to be visualized. A prediction model for fluid transport, based on the concrete composition and on the physical parameters of the fluids, is presented. A good agreement is observed when values obtained from the prediction model are compared to the experimental results in defining the effective pore size range in concrete which influences the transport of fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deutscher Ausschuss für Stahlbeton (1992) Richtlinie für Betonbau beim Umgang mit wassergefahrdenden Stoffen, Berlin, Köln: Beuth Verlag GmbH.

    Google Scholar 

  2. Reinhardt, H.W. and Gaber, K. (1990) From pore size distribution to an equivalent pore size of cement mortar, Materials and Structures, Matériaux et Construction 23, 3–15.

    Article  CAS  Google Scholar 

  3. Hall, C., Hoff, W.D. and Wilson, M.A. (1993) Effect of non-sorptive inclusions on capillary absorption by a porous material, Journal of Physics; D: Applied Physics 26, 31–34.

    Article  CAS  Google Scholar 

  4. Sosoro, M. (1994) Modell zur Vorhersage des Eindringverhaltens von organischen Flüssigkeiten in Beton [thesis], University of Stuttgart (in press).

    Google Scholar 

  5. Lide, D.R. editor-in-chief (1991) Handbook of Chemistry and Physics, 72nd ed. Boca Raton, Ann Arbor, Boston: CRC press.

    Google Scholar 

  6. Sosoro, M. (1993) Determination of the penetration depth of volatile fluids in concrete using thermography, Otto Graf Journal 4, 288–299.

    CAS  Google Scholar 

  7. Landolt-Börnstein (1956) Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 6. ed., part II-3, Berlin, Göttingen, Heidelberg: Springer-Verlag.

    Google Scholar 

  8. Claesson, P.M., and Christenson, H.K. (1988) Very long range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water, Journal of Physical Chemistry, 92 (6): 1650–1655.

    Article  CAS  Google Scholar 

  9. Horn, R.G., Smith, D.T. and Haller, W. (1989) Surface forces and viscosity of water measured between silica sheets, Chemical Physics Letters 162 (4/5): 404–408.

    Article  CAS  Google Scholar 

  10. Herder, P.C. (1990) Forces between hydrophobed mica surfaces immerced in dodecyl-ammonium chloride solution, Journal of Colloid and Interface Science, 134 (2): 336–345.

    Article  CAS  Google Scholar 

  11. Kurihara, K., Kato, S. and Kunitake, T. (1990) Very strong long range attractive forces between stable hydrophobic monolayers of a polymerized ammonium surfactant. Chemistry Letters, 1555–1558.

    Google Scholar 

  12. Günter, M. and Hilsdorf, H.K. (1986) Stresses due to physical and chemical actions in polymer coatings on a concrete substrate. RILEM-Symp. “Adhesion between polymers and concrete,” Paris: Chapman and Hall, London, 8–21.

    Google Scholar 

  13. Günter, M. and Hilsdorf, H.K. (1988) Influence of physical and chemical interactions between a concrete substrate and organic surface coatings on bond strength, Abschlusskolloquium des Forschungsschwerpunkt-Programmes der DFG “Dauerhaftigkeit nichtmetallischer anorganischer Baustoffe,” Massivbau Baustofftechnologie Karlsruhe, 6: 161–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sosoro, M., Reinhardt, H.W. (1996). Effect of Moisture in Concrete on Fluid Absorption. In: Jennings, H., Kropp, J., Scrivener, K. (eds) The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability. NATO ASI Series, vol 304. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8646-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8646-7_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4653-6

  • Online ISBN: 978-94-015-8646-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics