Skip to main content

FIPI: Fast 3-D PET Reconstruction by Fourier Inversion of Rebinned Plane Integrals

  • Chapter
Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

Part of the book series: Computational Imaging and Vision ((CIVI,volume 4))

Abstract

A fast reconstruction algorithm for three-dimensional (3-D) positron emission tomography (PET) has been developed by the use of Fourier inversion of rebinned plane integrals (FIPI). The FIPI algorithm rebins 3-D PET data into plane integrals (3-D Radon transforms) and then reconstructs 3-D images by Fourier inversion of the plane integrals. The algorithm was quantitatively evaluated by the use of simulated as well as measured data, and its results were compared to those of two other algorithms: 2-D filtered-backprojection (FBP) and 3-D reprojection. The results indicate that the three algorithms produce images with good and comparable resolution, but the two 3-D PET algorithms yield images with significantly better statistics than does the 2-D FBP algorithm. The results further show that our FIPI algorithm is five times faster than the widely used reprojection algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelsson C and Danielsson P-E (1994). Three-dimensional reconstruction from cone-beam data in O(N3logN) time. Phys. Med. Biol., 39, 477–491.

    Article  PubMed  CAS  Google Scholar 

  • Burnham CA, Kaufman DE, Chesler DA, Stearns CW, Wolfson DR, and Brownell GL (1988). Cylindrical PET detector design. IEEE Trans. Nucl. Sci., 35, 675–679.

    Article  CAS  Google Scholar 

  • Chiu MY, Barrett HH, and Simpson RG (1980). Three-dimensional image reconstruction from planar projections. J. Opt. Soc. Am., 70, 755–762.

    Article  Google Scholar 

  • Cho ZH, Ra JB, and Hilal SH (1983). True three dimensional reconstruction (TTR)—Application of algorithm toward full utilization of oblique rays. IEEE Trans. Med. Imag., MI-2, 6–18.

    Article  Google Scholar 

  • Clack R, Zeng GL, Weng Y, Christian PE, and Gullberg GT (1991). Cone beam single photon emission computed tomography using two orbits. In A. Colchester and D. Hawkes (Eds.), Xllth International Conference on Information Processing in Medical Imaging, Kent, England (pp. 45–54). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Colsher JG (1980). Fully three-dimensional positron emission tomography. Phys. Med. Biol., 25, 103–115.

    Article  PubMed  CAS  Google Scholar 

  • Daube-Witherspoon ME and Muehllehner G (1987). Treatment of axial data in threedimensional PET. J. Nucl. Med., 28, 1717–1724.

    PubMed  CAS  Google Scholar 

  • Deans SR (1983). The Radon Transform and Some of Its Applications. New York: Wiley.

    Google Scholar 

  • Defrise M and Clack R (1994). A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection. IEEE Trans. Med. Imag., 13 186–195.

    Article  CAS  Google Scholar 

  • Defrise M, Townsend D, and Clack R (1992). FAVOR: A fast reconstruction algorithm for volume imaging in PET. In Conference Record of the IEEE 1991 Nuclear Science Symposium and Medical Imaging Conference, 3 (pp. 1919–1923).

    Google Scholar 

  • Defrise M, Geissbuhler, and Townsend DW (1994). A performance study of 3D reconstruction algorithms for positron emission tomography. Phys. Med. Biol., 39, 305–320.

    Article  PubMed  CAS  Google Scholar 

  • Dykstra CJ (1989). The use of Radon transforms in fully 3-dimensional positron volume imaging-A feasibility study. MS Thesis, Simon Fraser University, Burnaby, British Columbia, Canada.

    Google Scholar 

  • Edholm PR and Herman GT (1987). Linograms in image reconstruction from projections. IEEE Trans. Med. Imag., MI-6, 301–307.

    Article  Google Scholar 

  • Gindi GR, Arendt J, Barrett HH, Chiu MY, Ervin A, Giles CL, Kujoory MA, Miller EL, and Simpson RG (1982). Imaging with rotating-slit apertures and rotating collimators. Med. Phys., 9, 324.

    Article  PubMed  CAS  Google Scholar 

  • Grangeat P (1985). 3D reconstruction for diverging X-ray beams. In H. U. Lemke, M. L. Rhodes, C. C. Jaffee, and R. Felix (Eds.), Computer Assisted Radiology: Proceedings of the International Symposium CAR’85 (pp. 59–64). Berlin: Springer-Verlag.

    Google Scholar 

  • Grangeat P (1987) Analyse d’un systeme d’ imagerie 3D par reconstruction a partir de radiographies X en geometrie conique. These de Doctorat, Ecole Nationale Superieure des Telecommunications, Paris, France.

    Google Scholar 

  • Grangeat P (1991). Mathematical framework of cone-beam 3D reconstruction via the first derivative of the Radon transform. In G. T. Herman, A. K. Louis, and F. Natterer (Eds.), Mathematical Methods in Tomography (pp. 67–97). New York: Springer-Verlag.

    Google Scholar 

  • Gullberg GT, Zeng GL, Datz FL, Christian PE, Tung C, and Morgan HT (1992). Review of convergent beam tomography in single photon emission computed tomography. Phys. Med. Biol., 37, 507–534.

    Article  PubMed  CAS  Google Scholar 

  • Hawman EG and Hamill JJ (1993). Slat collimation for high sensitivity 2D and 3D emission imaging. J. Nucl. Med., 34, 10P.

    Google Scholar 

  • Herman GT, Roberts R, and Axel L (1992). Fully three-dimensional reconstruction from data collected on concentric cubes in Fourier space: implementation and sample applications to MRI. Phys. Med. Biol., 37, 673–687.

    Article  PubMed  CAS  Google Scholar 

  • Kinahan PE and Rogers JG (1989). Analytic 3D image reconstruction using all detected events. IEEE Trans. Nucl. Sci., NS-36, 964–968.

    Article  Google Scholar 

  • Lewitt RM (1983). Reconstruction algorithms: Transform methods. Proc. IEEE, 71, 390–408.

    Article  Google Scholar 

  • Lewitt RM, Muehllehner G, and Karp J (1994). Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering. Phys. Med. Biol., 39, 321–340.

    Article  Google Scholar 

  • Lodge MA, Flower MA, Webb S, and Binnie DM (1995). Single photon emission computed tomography employing a rotating slat collimator. In Proceedings of the 1995 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, (pp. 337–341).

    Google Scholar 

  • Marr RB, Chen C-N, and Lauterbur PC (1981). On two approaches to 3D reconstruction in NMR zeugmatography. In G. T. Herman and F. Natterer (Eds.), Mathematical Aspects of Computerized Tomography (pp. 225–240). Berlin: Springer.

    Chapter  Google Scholar 

  • Mckee BTA, Stewart AT, Dinsdale HB, Hogan MJ, Mak HB, Howse DC, and Kulick J (1988). Description and performance of a prototype PET system for small volume imaging. Nucl. Instrum. Meth. Phys. Res., 269, 392–403.

    Article  Google Scholar 

  • Muehllehner G, Karp JS, Mankoff DA, Beerbohm D, and Ordonez CE (1988). Design and performance of a new positron tomograph. IEFE Trans. Nucl. Sci., 35, 670–674.

    Article  CAS  Google Scholar 

  • Pelc NJ and Chesler DA (1979). Utilization of cross-plane rays for 3D reconstruction by filtered backprojection. J. Comput. Assist. Tomogr., 3, 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Radon J (1917). Ãœber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften. Leipzig, Math.-Phys. Kl., 69, 262–267.

    Google Scholar 

  • Rogers JG, Harrop R, Coombes G, Wilkinson NA, Atkins MS, Pate BD, Morrison KS, Stazyk M, Dykstra CJ, Barney JS, Doherty PW, and Saylor DP (1989). Design of a volume-imaging positron emission tomograph. IEEE Trans. Nucl. Sci., 36, 993–997.

    Article  CAS  Google Scholar 

  • Shepp LA (1980). Computerized tomography and nuclear magnetic resonance. J. Comput. Assist. Tomogr., 4, 94–107.

    Article  PubMed  CAS  Google Scholar 

  • Stazyk MW and Rogers JG (1992). Analytic image reconstruction in PVI using the 3D Radon transform. IEEE Trans. Nucl. Sci., NS-39, 1153–1160.

    Article  Google Scholar 

  • Stazyk MW, Rogers JG, and Harrop R (1992). Full data utilization in PVI using the 3D Radon transform. Phys. Med. Biol., 37, 689–704.

    Article  PubMed  CAS  Google Scholar 

  • Stearns CW, Chesler DA, and Brownell GL (1987). Three dimensional image reconstruction in the Fourier domain. IEEE Trans. Nucl. Sci., NS-34(1), 374–378.

    Article  CAS  Google Scholar 

  • Stearns CW, Chesler DA, and Brownell GL (1990). Accelerated image reconstruction for a cylindrical tomograph using Fourier domain methods. IEEE Trans. Nucl. Sci., NS-37, 773–777.

    Article  Google Scholar 

  • Tabei M and Ueda M (1992). Backprojection by upsampled Fourier series expansion and interpolated FFT. IEEE Trans. Imag. Proc., 1 (1), 77–87.

    Article  CAS  Google Scholar 

  • Townsend DW, Spinks T, Jones T, Geissbühler A, Defrise M, Gilardi MC, and Heather J (1989). Three-dimensional reconstruction of PET data from a multi-ring camera. IEEE Trans. Nucl. Sci., NS-36, 1056–1065.

    Article  Google Scholar 

  • Townsend DW, Kinahan P, Beyer T, Jadali F, Sashin D, and Mintun M (1995). Performance characteristics of PET scanners operated in 3D mode. In Proceedings of the 1995 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, (pp. 225–229).

    Google Scholar 

  • Wu C (1994). Fully three-dimensional reconstruction in PET and SPECT by the use of threedimensional Radon transforms. PhD Dissertation, University of Chicago, Chicago.

    Google Scholar 

  • Wu C, Chen C-T, Gunter DL, and Ordonez CE (1992). Fully 3D PET image reconstruction with plane integrals. Radiology, 185 (P), 252.

    Google Scholar 

  • Wu C, Wernick MN, and Chen C-T (1993). A 3-D filtered-backprojection reconstruction algorithm for combined parallel- and cone-beam SPECT data. In H. Barrett and A. Gmitro (Eds.), XIIIth International Conference on Information Processing in Medical Imaging, Flagstaff, Arizona (pp. 387–400). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Wu C, Gunter DL, and Chen C-T (1994). Analytic reconstruction for helical-orbit cone-beam SPECT. In Conference Record of the IEEE 1993 Nuclear Science Symposium and Medical Imaging Conference, 3 (pp. 1510–1514).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, C., Ordonez, C.E., Chen, CT. (1996). FIPI: Fast 3-D PET Reconstruction by Fourier Inversion of Rebinned Plane Integrals. In: Grangeat, P., Amans, JL. (eds) Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Computational Imaging and Vision, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8749-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8749-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4723-6

  • Online ISBN: 978-94-015-8749-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics