Skip to main content

Footprints of Atmospheric Phenomena in Synthetic Aperture Radar Images of the Ocean Surface: A Review

  • Chapter
Air-Sea Exchange: Physics, Chemistry and Dynamics

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 20))

Abstract

Measurements of satellite-based, vertically polarized radar backscatter from the ocean surface translate via empirical formulae into wind speed and direction. (Early references include Jones and Schroeder (1977), Jones et al. (1982), and Schroeder et al. (1982). See Stoffelen (1998) and its references for the various “CMOD” algorithms that relate wind speed and backscatter for C-band (5.3 GHz) scatterometers.) This relationship exists because the wind roughens the water surface via the production of gravity-capillary waves (Dorman, Mollo-Christensen 1973; Kahma, Donelan 1987; Caulliez et al. 1998) which, in turn, effectively backscatter radar signals via Bragg scattering for grazing angles between 20° and 70° (Plant 1990). Gravity-capillary waves may also be generated by the crumpling of the front of wind-driven gravity waves that are near breaking. (Jessup et al. 1997) reviews the literature on gravity capillary waves and also offers infrared images of their microscale breaking.) These waves can be an additional significant source of direct C-band radar backscatter for grazing angles between 60° and 10° (Plant 1997) as well as at smaller grazing angles (Smith et al. 1996). They can also induce multiple scattering (Trizna, Carlson 1996; Trizna 1997). Small-scale bores created by microscale breaking are also a significant source of backscatter at low grazing angles (Trizna 1997). The crumpling waves are a source of radar backscatter independent of local, short-term wind conditions. So are wind-driven gravity waves and swell, which modulate the gravity-capillary wave field, thereby producing significant variations in radar backscatter (Donelan, Pierson 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpers, W., Brümmer, B. (1994) Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res., 99 (C6), 12, 613–12, 621.

    Article  Google Scholar 

  • Alpers, W., Stilke, G. (1996) Observations of a nonlinear wave disturbance in the marine atmosphere by Synthetic Aperture Radar aboard the ERS-1 satellite. J. Geophys. Res., 101 (C3) 6513–6525.

    Article  Google Scholar 

  • Alpers, W., Wang-Chen, H., Hock, L. (1997) Observation of internal waves in the Andaman Sea by ERS SAR. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Singapore, 1518–1520.

    Google Scholar 

  • Alpers, W., Pahl, U., Gross, G. (1998) Katabatic wind fields in coastal areas studied by ERS-1 synthetic aperture radar imagery and numerical modeling. J. Geophys. Res., 103 (C4), 7875–7886.

    Article  Google Scholar 

  • Atlas, D. (1994) Origin of storm footprints on the sea seen by synthetic aperture radar. Science, 266, 1364— 1366.

    Google Scholar 

  • Atlas, D., Black, P.G. (1994) The evolution of convective storms from their footprints on the sea as viewed by synthetic aperture radar from space. Bull. Amer. Meteor. Soc., 1183–1189.

    Google Scholar 

  • Atlas, D., Walter, B., Chou, S.-H-, Sheu, P.J. (1986) The structure of the unstable marine boundary layer viewed by lidar and aircraft observations. J. Atmos. Sci., 43, 1301–1318.

    Article  Google Scholar 

  • Atlas, D., Iguchi, T., Pierce, H.F. (1995) Storm-induced wind patterns on the sea from spaceborne synthetic aperture radar. Bull. Amer. Meteor. Soc., 1585–1592.

    Google Scholar 

  • Bauer, E. (1997) Statistical comparison of winds from ERS-1 scatterometer and ECMWF model in time and wavenumber domain. Proc. Third ERS Symp. Space at the Service of Our Environment, Florence, Italy, ESTEC, 1195–1200.

    Google Scholar 

  • Beal, R. C., Kudryavtsev, V.N., Thompson, D.R., Grodsky, S.A., Tilley, D.G., Dulov, V.P., Graber, H.C. (1997) The influence of the marine atmospheric boundary layer on ERS-1 synthetic aperture radar imagery of the gulf stream. J. Geophys. Res., 102 (C3), 5799–5814.

    Article  Google Scholar 

  • Brown, R.A. (1980) Longitudinal instabilities and secondary flow in the atmospheric boundary layer: A review. Rev. Geophys. Space Phys., 18, 683–697.

    Article  Google Scholar 

  • Brown, R.A. (1991) Fluid Mechanisms of the Atmosphere, Academic Press, 489 pp.

    Google Scholar 

  • Caulliez, G., Ricci, N., Dupont, R. (1998) The generation of the first visible wind waves. Phys. Fluids, 10(4), 757–759.

    Article  Google Scholar 

  • Chang, P.S., Wilkerson, J.C., Donnelly, W.J., Carswell, J.R., McIntosh, R.E. (1998) Investigation of the ocean backscatter during high wind events: Part I. Experiment description and results. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Chapron, B., Elfouhaily, T., Kerbaol, V. (1994) A SAR speckle wind algorithm. Proc. Second ERS-1 Workshop, de la Mer, Brest, France, Inst. Fr. de Rech. pour l’Exploit, 5–40.

    Google Scholar 

  • Donelan, M.A., Pierson, Jr., W.J. (1987) Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92(C5), 4971–5029.

    Article  Google Scholar 

  • Donnelly, W.J., Carswell, J.R., McIntosh, R.E., Chang, P.S., Wilkerson, J.C. (1998) Investigation of the ocean backscatter during high wind events: Part II. Analyses and revised high wind backscatter models. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Dorman, C.E., Mollo-Christensen, E. (1973) Observation of the structure on moving gust patterns over a water surface (“cat’s paws”). J. Phys. Oceanogr., 3, 120–132.

    Article  Google Scholar 

  • Etling, D., Brown, R.A. (1993) Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteorol., 65, 215–248.

    Article  Google Scholar 

  • Fetterer, F., Gineris, D., Wackerman, C.C. (1998) Validating a scatterometer wind algorithm for ERS-1 SAR. IEEE Trans. Geosci. Remote Sens., 36(2), 479–493.

    Article  Google Scholar 

  • Ford, J.P., Cimino, J.B., Elachi, C. (1983) Space shuttle Columbia views the world with imaging radar: The SIR-A. JPL Publication 82–95, Jet Propul. Lab., Pasadena, CA.

    Google Scholar 

  • Freilich, M.H., Chelton, D.B. (1986) Wavenumber spectra of pacific winds measured by the Seasat scatterometer. Bull. Amer. Meteor. Soc., 16, 741–757.

    Google Scholar 

  • Fu, L.L., Holt, B. (1982) SEASAT views oceans and sea ice with synthetic aperture radar. JPL Publication 82120, Jet Propul. Lab, Pasadena, CA.

    Google Scholar 

  • Geernaert, G.L., Larsen, S. (1998) Air sea interaction in the coastal zone. In: The Sea—The Global Coastal Ocean, K. Brink and A. Robinson, Eds., Wiley, Chapter 4, pp. 89–112.

    Google Scholar 

  • Gerling, W. T. (1986) Structure of the surface wind field from the Seasat SAR. J. Geophys. Res., 91, 2308 2320.

    Google Scholar 

  • Høgda, K.A., Engen, G., Johnsen, H. (1998) Wind field estimation from SAR ocean images. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Howell, M., Mahrt, L. (1987) Multiresolution flux decomposition. Bound-Layer Meteor., 83, 117–137.

    Article  Google Scholar 

  • Hughes, B. A., Gasparovic, R.F. (1988) Introduction to the special section on the Georgia Strait and SAR Internal Waves signature experiment. J. Geophys. Res., 93 (C10), 12, 217–12, 218.

    Google Scholar 

  • Hühnerfuss, H., Gericke, A., Alpers, W., Theis, R., Wismann, V., Lange, P.A. (1994) Classification of sea slicks by multifrequency radar techniques: New chemical insights and their geophysical implications. J. Geophys. Res., 99(C5), 9835–9845.

    Article  Google Scholar 

  • Iguchi, T., Atlas, D., Okamoto, K., Sumi, A. (1995) Footprints of storms on the sea in the ERS-1 SAR image. IEICE Trans. Commun., E78-B, 1580.

    Google Scholar 

  • Jessup, A.T., Zappa, C.J., Yeh, H. (1997) Defining and quantifying microscale breaking with infrared sensors. J. Geophys. Res., 102 (C 10), 23, 145–23, 153.

    Google Scholar 

  • Johannessen, J.A., Shuchman, R.A., Johannessen, O.M., Davidson, K.L., Lyzenga, D.R. (1991) Synthetic aperture radar imaging of upper ocean circulation features and wind fronts. J. Geophys. Res., 96 (C6), 10, 411–10, 422.

    Google Scholar 

  • Johannessen, J.A., Vachon, P.W., Johannessen, O.M. (1994) ERS-1 imaging of marine boundary layer processes. Earth Observ. Quart., 45, 1–5.

    Google Scholar 

  • Johannessen, J.A., Shuchman, R.A., Digrenes, G., Lyzenga, D.R., Wackerman, C., Johannessen, O.M., Vachon, P.W. (1996) Coastal ocean fronts and eddies imaged by the ERS-1 synthetic aperture radar. J. Geophys. Res., 101(C3), 6651–6667.

    Article  Google Scholar 

  • Johnsen, H., Hødga, K.A., Guneriussen, T., Pedersen, J.P. (1991) Azimuth smearing in synthetic aperture radar ocean image spectra from the Norwegian continental shelf experiment of 1988. J. Geophys. Res., 96 (C6), 10, 443–10, 452.

    Article  Google Scholar 

  • Jones, W.L., Schroeder, L.C. (1977) Radar backscatter from the ocean: dependence on surface friction velocity. Bound.-Layer Meteor., 13, 133–149.

    Article  Google Scholar 

  • Jones, W.L., Schroeder, L.C., Boggs, D.H., Bracalente, E.M., Brown, R.A., Dome, GJ., Pierson, W.J., Wentz, F.J. (1982) The SEASAT-A satellite scatterometer: The geophysical evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res., 87 (C5), 3297–3317.

    Article  Google Scholar 

  • Jones, W.L., J. Park, W.J. Donnelly, J.R. Carswell, R.E. McIntosh, J. Zec, and S. Yueh, 1998: An improved NASA scatterometer geophysical model function for tropical cyclones. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Kahma, K. K. and M. A. Donelan, 1987: A laboratory study of the minimum wind speed for wind wave generation. J. Fluid Mech., 192, 339–364.

    Article  Google Scholar 

  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563–589.

    Article  Google Scholar 

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169.

    Article  Google Scholar 

  • Kalmykov, A.I., A.P. Pichugin, V.N. Tsymbal, and V.P. Shestopalov, 1985: Radiophysical observations from space of intermediate-scale formations on the surface of the ocean. Sov. Phys. Dok, 29 (12), 1016–1017.

    Google Scholar 

  • Katsaros, K.B., A. Bertamy, A. Cavarie, B. Chapron, R. Ezratz, P. Farcy, F. Gohin, P. Quilfen, and J. Tournache, 1993: ERS-1 studies at the department of oceanography from space. IFREMER/Brest. Proc. 1 st ERS-1 Symp., Noordwijk, The Netherlands, ESA SP-359.

    Google Scholar 

  • Keller, W.C., W.J. Plant, and D.E. Weissman, 1985: The dependence of X band microwave sea return on atmospheric stability and sea state. J. Geophys. Res., 90 (C1), 1019–1029.

    Article  Google Scholar 

  • Kerbaol, V., and B. Chapron, 1998: Analysis of ERS-1/2 synthetic aperture radar wave mode images. J. Geophys. Res., 103 (C4), 7833–7846.

    Article  Google Scholar 

  • Korsbakken, E., J.A. Johannessen, and O.M. Johannessen, 1998: Coastal wind field retrievals from ERS synthetic aperture radar images. J. Geophys. Res., 103 (C4), 7857–7874.

    Article  Google Scholar 

  • Laur, H., P. Bally, P. Meadows, J., Sanchez, B. Schaettler, and E. Lopinto, 1997: Derivation of the backscattering coefficient 0 in ESA ERS SAR PRI products, Tech. Note ES-TN-RS-PM-HL09, issue 2, rev. 4, 41 pp., Eur. Space Agency, Frascati, Italy.

    Google Scholar 

  • Lehner, S., J. Horstmann, W. Koch, and W. Rosenthal, 1998: Mesoscale wind measurements using recalibrated ERS SAR images. J. Geophys. Res., 103 (C4), 7847–7856.

    Article  Google Scholar 

  • Li, X., W.G. Pichel, K.S. Friedman, and P. Clemente-Colón, 1998: The sea surface imprint of island lee waves as observed by RADARSAT synthetic aperture radar. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Lyzenga, D.R., and R.A. Shuchman, 1983: Analyses of scatterer motion effects in MARSEN X band synthetic aperture radar imager. J. Geophy. Res., 88, 9769–9775.

    Article  Google Scholar 

  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. J. Theor. Comm. Fluid Dyn., 11, 263–280.

    Article  Google Scholar 

  • Mahrt, L., D. Vickers, J. Howell, Jorgen Hojstrup, J. Wilczak, J. Edson and J. Hare, 1996: Sea surface drag coefficients in RASEX. J. Geophys. Res., 101, 14, 327–14, 335.

    Article  Google Scholar 

  • Meadows, P. J., and P. A. Wright, 1994: ERS-1 SAR analogue to digital convertor saturation. Proc. CEOS SAR Calibration Workshop, Ann Arbor, MI, pp. 24–37.

    Google Scholar 

  • Melsheimer, C., R. Romeiser, and W. Alpers, 1998: Modeling of radar signatures of rain cells over the sea. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Mitnik, L.M., 1992: Mesoscale coherent structures in the surface wind field during cold air outbreaks over the Far Eastern seas from the satellite side looking radar. Société franco japonaise d’océanographie, Tokyo, Japan; 287–296.

    Google Scholar 

  • Mitnik, L., M. Mitnik, and M. Hsu, 1998: Satellite X-band real aperture radar signatures of nonprecipitating clouds, rain cells and rain bands. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Mityagina, M.I., Y.A. Kravtsov, and V.A. Purgin, 1998: 2-polarization k-band radar imagery of oceanic surface features forced by moving atmospheric front. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Moore, R. K. and A. K. Fung, 1979: Radar determination of winds at sea. Proc. IEEE, 67 (2), 1505–1521.

    Google Scholar 

  • Mourad, P.D., 1996: Inferring multiscale structure in atmospheric turbulence using satellite-based synthetic aperture radar imagery. J. Geophys. Res., 101(C8), 18, 433–18, 449.

    Article  Google Scholar 

  • Mourad, P. D., and R. A. Brown, 1990: Multiscale large eddy states in weakly stratified planetary boundary layers. J. Atmos. Sci., 47 (4), 414–438.

    Article  Google Scholar 

  • Mourad, P. D., and B. A. Walter, 1996: Viewing a cold air outbreak using satellite-based synthetic aperture radar and advanced very high resolution radiometer imagery. J. Geophys. Res., 101 (C7), 16, 391–16, 400.

    Article  Google Scholar 

  • Mourad, P. D., T. Crawford, L. Mahrt, J. Sun, H. Stern, Dean Vickers and C. Vogel, 1999: Multiscale structure in coincident, marine atmospheric boundary layer turbulence and spatial patterns in radar backscatter from the ocean surface, in prep.

    Google Scholar 

  • Mueller, G., and A. Chlond, 1996: Three-dimensional numerical study of cell broadening during cold air outbreaks. Bound.-Layer Meteor., 81, 289–323.

    Article  Google Scholar 

  • Nilsson, C. S., and P.C. Tildesley, 1995: Imagining of oceanic features by ERS 1 synthetic aperture radar. J. Geophys. Res., 100, 953–967.

    Article  Google Scholar 

  • Plant, W. J., 1990: Bragg scattering of electromagnetic waves from the air/sea interface. In: Surface Waves and Fluxes V. II — Remote Sensing, G. L. Geernaert and W. J. Plant, Eds., Kluwer Academic Publishers, 41–108.6. (?)

    Google Scholar 

  • Plant, W.J., 1997: A model for microwave Doppler sea return at high incidence angles: Bragg scattering from bound, tilted waves. J. Geophys. Res., 102(C9), 21, 131–21, 146.

    Article  Google Scholar 

  • Quilfen, Y., 1993: ERS-1 off-line wind scatterometer products. Tech. Report ERS-SCAT/IOA/DGS-01, IFREMER.

    Google Scholar 

  • Quilfen, Y., and A. Bentamy, 1994: Calibration/Validation of ERS-1 scatterometer precision products. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Pasadena, CA, 945–947.

    Google Scholar 

  • Rees, W. G., 1990: Physical Principles of Remote Sensing. Cambridge University Press, 247 pp.

    Google Scholar 

  • Rogers, D.P., W. Johnson, and C. A. Friehe, 1995: The stable internal boundary layer over a coastal sea. II. Gravity waves and the momentum balance. J. Atmos. Sci., 52, 684–696.

    Article  Google Scholar 

  • Savtchenko, A., 1998: Effect of large eddies on atmospheric surface layer turbulence and the underlying wave field. Accepted by J. Geophys. Res.

    Google Scholar 

  • Schroeder, L.C., D.H. Boggs, G. Done, I.M. Halberstam, W.L. Jones, W.J. Pierson, and F.J. Wentz, 1982: The relationship between wind vector and normalized radar cross section used to derive SEASAT-A satellite scatterometer winds. J. Geophys. Res., 87 (C5), 3318–3336.

    Article  Google Scholar 

  • Scoon, A., I.S. Robinson, and P.J. Meadows, 1996: Demonstration of an improved calibration scheme for ERS-1 SAR imagery using a scatterometer wind model. Int. J. Remote Sens., 17 (2), 413–418.

    Article  Google Scholar 

  • Shemdin, O.H., 1980: The marine land experiment, an overview. Eos Trans. AGU, 61, 625–626.

    Article  Google Scholar 

  • Sikora, T.D., G.S. Young, R.C. Beal, and J.B. Edson, 1995: Use of spaceborne synthetic aperture radar imagery of the sea surface in detecting the presence and structure of the convective marine atmospheric boundary layer. Mon. Wea. Rev., 123 (12), 3623–3632.

    Article  Google Scholar 

  • Sikora, T.D., G.S. Young, and H.N. Shirer, 1997: Estimating convective atmospheric boundary layer depth from microwave radar imagery of the sea surface. J. Appl. Meteorol., 36, 833–845.

    Article  Google Scholar 

  • Sikora, T.D., B.A. Walter, and P.D. Mourad, 1999: Using synthetic aperture radar to remotely sense surface fluxes under low wind, highly convective conditions, in prep.

    Google Scholar 

  • Smith, J. J., E. M. Poulter, and J. A. McGregor, 1996: Doppler radar measurements of wave groups and breaking waves. J. Geophys. Res., 101(C6), 14, 269–14, 282.

    Article  Google Scholar 

  • Smirnov, A.V., 1994: Polarimetric radar imaging of the ocean at low grazing angles under atmospheric conditions of variable stability. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Pasadena, CA, 805–807.

    Google Scholar 

  • Smirnov, A.V., and V.U. Zavorotny, 1995: Study of polarization differences in Ku-band ocean radar imagery. J. Phys. Oceanogr., 2215–2228.

    Google Scholar 

  • Stoffelen, A., and D.L.T. Anderson, 1993: Wind retrieval and ERS-1 scatterometer radar backscatter measurements. Adv. Space Res., 13 (5), (5)53– (5)60.

    Article  Google Scholar 

  • Stoffelen, A., and D. Anderson, 1997: Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res., 102 (C3), 5767–5780.

    Article  Google Scholar 

  • Stoffelen, A., 1998: Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res., 103 (C4), 7755–7766.

    Article  Google Scholar 

  • Sykes, R.J., W.S. Lewellen, and D.S. Henn, 1988: A numerical study of the development of cloud street spacing. J. Atmos. Sci., 45, 2556–2569.

    Article  Google Scholar 

  • Thompson, T.W., W.T. Liu, and D.E. Weissman, 1983: Synthetic aperture radar observation of ocean roughness from rolls in an unstable marine boundary layer. Geophy. Res. Lett., 10(12), 1172–1175.

    Article  Google Scholar 

  • Thomson, R.E., P.W. Vachon, and G.A. Borstad, 1992: Airborne synthetic aperture radar imagery of atmospheric gravity waves. J. Geophys. Res., 97 (C9), 14, 249–14, 257.

    Article  Google Scholar 

  • Trizna, D. B., 1997: A model for Brewster angle damping and multipath effects on the microwave radar sea echo at low grazing angles. IEEE Trans Geo. & Remote Sens., 35 (5), 1232–1244.

    Article  Google Scholar 

  • Trizna, D. B., and D. J. Carlson, 1996: Studies of dual polarized low grazing angle radar sea scatter in the nearshore regions. IEEE Trans Geo. & Remote Sens., 34 (3), 747–757.

    Article  Google Scholar 

  • Trokhimovsky, Y.G., V. Yakovlev, R.D. Chapman, and D.R. Thompson, 1994: The coherence of wind and radar data obtained during the joint US—Russia Internal Wave Experiment. Int. Geoscience and Remote Sensing Symp. 94, Pasadena, CA, IEEE, 802–804.

    Google Scholar 

  • Vachon, P.W., O.M. Johannessen, and J.A. Johannessen, 1994: An ERS-1 synthetic aperture radar image of atmospheric lee waves. J. Geophys. Res., 99(C11), 22, 483–22, 490.

    Google Scholar 

  • Vachon, P.W., and F.W. Dobson, 1996: Validation of wind vector retrieval from ERS-1 SAR images over the ocean. The Global Atm. and Ocean Syst., 5, 177–187.

    Google Scholar 

  • Vachon, P. W., I. Chunchuzov, and F. W. Dobson, 1998: Wind field structure and speed from RADARSAT SAR images. Earth Observ. Quart., #59 (June), 12–15.

    Google Scholar 

  • Velichko, S.A., A.I. Kalmykov, Y.A. Sinitsyn, V.N. Tsymbal, and V.P. Shestopalov, 1989: Radar studies of intermediate-scale interactions of the ocean and the atmosphere from aerospace carriers. Sov. Phys. Dok., 34(9), 817–818.

    Google Scholar 

  • Wackerman, C.C., C.L. Rufenach, R.A. Schuchman, J.A. Johannessen, and K.L. Davidson, 1996: Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens., 34 (6), 1343–1352.

    Article  Google Scholar 

  • Walter, B. A., P. D. Mourad, T. Crawford, and C. Vogel, 1999: Signatures of atmospheric roll vortices in simultaneous in-situ turbulence measurements and a synthetic aperture radar image, in prep.

    Google Scholar 

  • Winstead, N.S., G.S. Young, D.R. Thompson, and H.N. Shirer, 1998a: Observations and analysis of drainage flow exit jets over the Chesapeake Bay using the ERS-1 synthetic aperture radar. 12th Symp. Bound.Layer Turb., Vancouver, B.C., 366–367.

    Google Scholar 

  • Winstead, N.S., G. S. Young, and S. Babin, 1998b: Inferring wind direction from the organization of mesoscale atmospheric signatures in RADARSAT imagery. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA.

    Google Scholar 

  • Wismann, V., 1993: A C-band wind scatterometer model derived from data obtained during the ERS-1 calibration/validation campaign. Proc. 1st ERS-2 Symp., Noordwijk, The Netherlands, ESA SP-359.

    Google Scholar 

  • Young, G.S., T.D. Sikora, and D.R. Thompson, 1997: A method for relating SAR backscatter from the sea surface to atmospheric boundary-layer turbulence statistics. Fourth Int. Conf. Remote Sens. Marine Coastal Environ., Orlando, Florida, II201—II210.

    Google Scholar 

  • Zheng, Q., X. Yan, V. Klemas, C. Ho, N. Kuo, and Z. Wang, 1998: Coastal lee waves on ERS-1 SAR images. J. Geophys. Res., 103 (C4), 7979–7993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mourad, P.D. (1999). Footprints of Atmospheric Phenomena in Synthetic Aperture Radar Images of the Ocean Surface: A Review. In: Geernaert, G.L. (eds) Air-Sea Exchange: Physics, Chemistry and Dynamics. Atmospheric and Oceanographic Sciences Library, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9291-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9291-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5308-4

  • Online ISBN: 978-94-015-9291-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics