Skip to main content

Abstract

The concentration of methane (CH4), the most abundant organic trace gas in the atmosphere, has increased dramatically over the last few centuries, more than doubling its concentration. Increasing concentrations of methane are of special concern because of their effects on climate and atmospheric chemistry. On a per molecule basis, additional methane is much more effective as a greenhouse gas than additional CO2. Methane is also important to both tropospheric and stratospheric chemistry. Here, we examine past trends in the concentration of methane, the sources and sinks affecting its growth rate, and the factors that could affect its growth rate in the future. This study also examines the current understanding of the effects of methane on atmospheric chemistry and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barns, D.W. and Edmonds, J. A. (1990). An Evaluation of the Relationship Between the Production and Use of Energy and Atmospheric Methane Emissions. U.S. Dept. of Energy, Carbon Dioxide Research Program, TR047, 223 pp.

    Google Scholar 

  • Bartlett, K. and Harriss, R. (1993). Review and assessment of methane emissions from wetlands. Chemosphere. 26, 261–320.

    Article  Google Scholar 

  • Bazhin, N. (1994). Sources and sinks of methane on the territory of the former USSR. Pure and Applied Chemistry 66, 188–191.

    Google Scholar 

  • Beck, L.L., Piccot, S.D. and Kirchgessner, D.A (1993). Industrial sources. In ‘Atmospheric Methane: Sources. Sinks and Role in Global Change.’ (Ed. M. Khalil ) pp. 399–341. ( Springer-Verlag, New York, NY ).

    Chapter  Google Scholar 

  • Bekki, S., Law, KS. and Pyle, J.A. (1994). Effects of ozone depletion on atmospheric CH4 and CO concentrations. Nature. 371, 595–599.

    Article  Google Scholar 

  • Bekki, S., and Law, K. (1997). Sensitivity of the atmospheric CH4 growth rate to global temperature changes observed from 1980 to 1992. Tellus. 49B, 409–416.

    Article  Google Scholar 

  • Blake, D.R and Rowland, F.S. (1988). Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science. 239, 1129–1131.

    Article  Google Scholar 

  • Blunier, T., Chappellaz, J., Schwander, J., Barnola, J., Desperts, T., Stauffer, B. and Raynaud, D. (1993). Atmospheric methane, record from a Greenland ice core over the last 1000 years. Geophysical Research Letters. 20, 2219–2222.

    Article  Google Scholar 

  • Blunier, T., Chapellaz, J. Schwander, J. Stauffer, B. and Raynaud, D. (1995). Variations in atmospheric methane concentration during the Holocene Epoch. Nature. 374, 46–49.

    Google Scholar 

  • Boeckx, P., VanCleemput, O. and Villaralvo, I. (1997). Methane oxidation in soils with different textures and land use. Nutrient Cycling in Agroecosystems. 49, 91–95.

    Article  Google Scholar 

  • Bogner, J. and Spokas, K. (1993). Landfill CH4: Rates, fates and role in global carbon cycle. Chemosphere. 26, 369–386.

    Article  Google Scholar 

  • Bogner, J., Spokas, K., Burton, E. Sweeney, R. and Corona, V. (1995). Landfills as atmospheric methane sources and sinks. Chemosphere. 31, 4119–4130.

    Google Scholar 

  • Boone, D. (1993). Biological formation and consumption of methane. In ‘Atmospheric Methane: Sources, Sinks and Role in Global Change.’ (Ed. M. Khalil ). pp. 102–127. ( Springer-Verlag, New York, NY ).

    Chapter  Google Scholar 

  • Borjesson, G. and Svensson, B. (1997). Effects of a gas extraction interruption on emissions of methane and carbon dioxide from a landfill, and on methane oxidation in the cover soil. J. Environmental Quality. 26, 1182–1190.

    Article  Google Scholar 

  • Brasseur, G. and Hitchman, M.H. (1988). Stratospheric response to trace gas perturbations: Changes in ozone and temperature distribution. Science. 240, 634–637.

    Article  Google Scholar 

  • Brasseur, G., Kiehl, J., Muller, J-F, Schneider, T., Granier, C., Tie, X. and Hauglustaine, D. (1998). Past and future changes in global tropospheric ozone: Impact on radiative forcing. Geophysical Research Letters. 25, 3807–3810.

    Article  Google Scholar 

  • Brenninkmeijer, C.A.M., Lowe, D.C., Manning, M.R., Sparks, R.J. and van Velthoven, P.F.J. (1995). The 13C, 14C, and 180 isotopic composition of CO, CH4, and CO2 in the higher southern latitudes lower stratosphere. Journal of Geophysical Research. 100, 26,163–26, 172.

    Google Scholar 

  • Brook, E., Sowers, T. and Orchardo, J. (1996). Rapid variations in atmospheric methane concentration during the past 110,000 years. Science. 273, 1087–1091.

    Article  Google Scholar 

  • Bruhl, C. (1993). The impact of the future scenarios for methane and other chemically active gases on the GWP of methane. Chemosphere. 26, 731–738.

    Article  Google Scholar 

  • Brune, W. (1992). Stalking the elusive atmospheric hydroxyl radical. Science. 256, 1154–1155.

    Article  Google Scholar 

  • Buendia, L., Neue, H., Wassmann, R., Lantin, R. and Javellana, A. (1997). Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies. Applied Energy. 56, 433–444.

    Article  Google Scholar 

  • Burnett, E.B. and Burnett, C. R. (1995). Enhanced production of stratospheric OH from methane oxidation at elevated reactive chlorine levels in northern midlatitudes. J. Atmospheric Chemistry. 21, 13–41.

    Article  Google Scholar 

  • ButterbachBahl, K., Papen, H. and Rennenberg, H. (1997). Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell and Environment. 20, 1175–1183.

    Article  Google Scholar 

  • Cao, M., Dent, J. and Heal, O. (1995). Modeling methane emissions from rice paddies. Global Biogeochemical Cycles. 9, 183–195.

    Article  Google Scholar 

  • Cao, M., Gregson, K., Marshall, S., Dent, J. and Heal, O. (1996). Global methane emissions from rice paddies. Chemosphere. 33, 879–897.

    Article  Google Scholar 

  • Chameides, W., Liu, S. and Cicerone, R. (1977). Possible variations in atmospheric methane. Journal of Geophysical Research. 82, 1795–1798.

    Article  Google Scholar 

  • Chappellaz, J., Barnola, J., Raynaud, D., Korotkevich, Y., and Lorius, C. (1990). Ice-core record of atmospheric methane over the past 160,000 years. Nature. 345, 127–131.

    Article  Google Scholar 

  • Chappellaz, J., Blunier, T., Raynaud, D., Bamola, J., Schwander, J., and Stauffer, B. (1993). Synchronous changes in atmospheric CH4 and Greenland climate between 40-kyr and 8kyr BP. Nature. 366, 443–445.

    Article  Google Scholar 

  • Chappellaz, J., Fung, I.Y., and Thompson, A.M., (1993). The atmospheric CH4 increase since the Last Glacial Maximum. Tellus, 45B, 228–241.

    Article  Google Scholar 

  • Chappellaz, J., Blunier, T., Kints, S, Dallenbach, A., Bamola, J., Schwander, J., Raynaud, D. and Stauffer, B. (1997). Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. Journal of Geophysical Research. 102, 15987–15997.

    Article  Google Scholar 

  • Cicerone, R.J. and Oremland, R.S. (1988). Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles. 2, 299–327.

    Article  Google Scholar 

  • Cole, C., Duxbury, J., Freney, J., Heinemeyer, O., Miami, K., Mosier, A., Paustian, K., ’ Rosenberg, N., Sampson, N, Sauerbeck, D. and Zhao, Q. (1997). Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutrient Cycling in Agroecosystems. 49, 221–228.

    Article  Google Scholar 

  • Craig, H., and Chou, C.C. (1982). Methane: The record in polar ice cores. Geophysical Research Letters. 9, 1221–1224.

    Article  Google Scholar 

  • Crosley, D. R. (1995). The measurement of OH and HO2 in the atmosphere. Journal of the Atmospheric Sciences. 52, 3299–3314.

    Article  Google Scholar 

  • Crutzen, P. (1988). Tropospheric ozone: An overview. In ‘Tropospheric Ozone: Regional and Global Scale Interactions. (Eds. I.S.A. Isaksen ). pp. 3–11. ( Reidel Publishing, Boston, MA ).

    Chapter  Google Scholar 

  • Crutzen, P. (1995). Overview of tropospheric chemistry: Developments during the past quarter century and a look ahead. Faraday Discussion. 100, 1–21.

    Google Scholar 

  • Crutzen, P., and Zimmermann, P. (1991). The changing photochemistry of the troposphere. Tellus. 43AB, 136–151.

    Google Scholar 

  • Crutzen, P., and Bruhl, C. (1993). A model study of the atmospheric temperatures and concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the pre-industrial Holocene and the present. Geophysical Research Letters. 20, 1047–1050.

    Article  Google Scholar 

  • Czepiel, P., Mosher, B., Crill, P. and Harriss, R. (1996). Quantifying the effect of oxidation on landfill methane emissions. Journal of Geophysical Research. 101, 16721–16729.

    Article  Google Scholar 

  • Denier van der Gon, H. and Neue, H.U. (1995). Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles. 9, 11–22.

    Article  Google Scholar 

  • Dibb, J., Rasmussen, R., Mayewski, P. and Holdsworth, G. (1993). Northern hemisphere concentrations of methane and nitrous oxide since 1800: Results from the Mt. Logan and 20D ice cores. Chemosphere. 27, 2413–2423.

    Article  Google Scholar 

  • Dickens, G., Castillo, M. and Walker, J. (1997). A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology. 25, 259–262.

    Article  Google Scholar 

  • Dickinson, R.E. and Cicerone, R.J. (1986). Future global warming from atmospheric trace gases. Nature. 319, 109–115.

    Article  Google Scholar 

  • Dlugokencky, E., Steele, L., Lang, P. and Masarie, K. (1994a). The growth rate and distribution of atmospheric methane. Journal of Geophysical Research. 99, 17021–17043.

    Article  Google Scholar 

  • Dlugokencky, E., Masaire, K., Lang, P., Tans, P., Steele, L. and Nisbet, E. (1994b). A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophysical Research Letters. 21, 45–48.

    Article  Google Scholar 

  • Dlugokencky, E., Steele, L.P., Lang, P. and Masarie, K. (1995). Atmospheric methane at Mauna Loa and Barrow observatories: Presentation and analysis of in situ measurements. Journal of Geophysical Research. 100, 23103–23113.

    Article  Google Scholar 

  • Dlugokencky, E., Dutton, E., Novelli, P., Tans, P., Masarie, K., Lantz, K. and Madronich, S. (1996). Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux. Geophysical Research Letters. 23, 2761–2764.

    Article  Google Scholar 

  • Dlugokencky, E., Masarie, K., Tans, P., Conway, T. and Xiong, X. (1997). Is the amplitude of the methane seasonal cycle changing? Atmospheric Environment. 31, 21–26.

    Article  Google Scholar 

  • Dlugokencky, E., Masarie, K., Lang, P. and Tans, P. (1998). Continuing decline in the growth rate of the atmospheric methane burden. Nature. 393, 447–450.

    Article  Google Scholar 

  • Dobbie, K. and Smith, K. (1996). Comparison of CH4oxidation rates in woodland, arable and set aside soils. Soil Biology and Biochemistry. 28, 1357–1365.

    Article  Google Scholar 

  • Donner, L. and Ramanathan, V. (1980). Methane and nitrous oxide: Their effects on the terrestrial climate. Journal of the Atmospheric Sciences. 37, 119–124.

    Article  Google Scholar 

  • Ehhalt. D.H. (1986). On the consequences of a tropospheric CH4 increase to the exospheric density. Journal of Geophysical Research. 91, 2843.

    Article  Google Scholar 

  • Environmental Protection Agency, (I 993a): Opportunities to Reduce Anthropogenic Methane Emissions in the United States. (Ed. K. Hogan). U.S. EPA, Office of Air and Radiation, EPA 430-R-93–012, 420 pp.

    Google Scholar 

  • Environmental Protection Agency, (1993b): Options for Reducing Methane Emissions Internationally. (Ed. K. Hogan). U.S. EPA, Office of Air and Radiation, EPA 430-R-93–006B, 350 pp.

    Google Scholar 

  • Etheridge, D., Pearman, G. and Fraser, P. (1992). Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus. 44B, 282–294.

    Article  Google Scholar 

  • Etheridge, D., Steele, L., Francey, R. and Langenfelds, R. (1998). Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research. 103, 15979–15993.

    Google Scholar 

  • Fishman, J. (1985). Ozone in the troposphere. In ‘Ozone in the Free Atmosphere.’ (Eds. R.C. Whitten and S.S. Prasad ). pp 161–194 ( Van Nostrand Reinhold, New York, NY ).

    Google Scholar 

  • Fishman, J., Solomon, S. and Crutzen, P.J. (1979). Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus. 31, 432–446.

    Article  Google Scholar 

  • Fuglestvedt, J., Jonson, J. and Isaksen, I. (1994). Effects of reductions in stratospheric ozone on tropospheric chemistry through changes in photolysis rates. Tellus. 46B, 172–192.

    Article  Google Scholar 

  • Fuglestvedt, J.S., Isaksen, I.S.A. and Wang. W.-C. (1996). Estimates of indirect Global Warming Potentials for Cho, CO and NOI. Climatic Change. 34, 405–437.

    Article  Google Scholar 

  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. and Fraser, P. (1991). Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research. 96, 13033–13065.

    Article  Google Scholar 

  • Gettelman, A., Holton, J.R., and Rosenlof, K.H. (1997). Mass fluxes of 03, CH4, N2O and CF2C12 in the lower atmosphere calculated from observational data. Journal of Geophysical Research, 102, 19149–19159.

    Article  Google Scholar 

  • Gupta, M., Tyler, S. and Cicerone, R. (1996). Modeling atmospheric • 13CH4 and the causes of recent changes in atmospheric CH4 amounts. Journal of Geophysical Research. 101, 22923–22932.

    Article  Google Scholar 

  • Haan, D., and Raynaud, D. (1998). Ice core record of CO variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice. Tellus. 50B, 253–262.

    Article  Google Scholar 

  • Hansen, A.R. and Robinson, G.D. (1989). Water vapor and methane in the upper stratosphere: An examination of some of the Nimbus 7 measurements. Journal of Geophysical Research. 94, 8474–8484.

    Article  Google Scholar 

  • Harvey, L.D.D. and Huang, Z. (1995). Evaluation of the potential impact of methane clathrate destabilization on future global warming. Journal of Geophysical Research. 100, 2905–2926.

    Article  Google Scholar 

  • Hayhoe, K. (1997) A modelling study of the role of methane in global climate change. M.S. Thesis, University of Illinois, 146 pp.

    Google Scholar 

  • Hayhoe, K., Jain, A., Kheshgi, H. and Wuebbles, D. (1999) Contribution of CH4 to Multi-Gas Reduction Targets: The Impact of Atmospheric Chemistry on GWPs. This volume.

    Google Scholar 

  • Hauglustaine, D., Granier, C., Brasseur, G. and Megie, G. (1994). The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system. Journal of Geophysical Research. 99, 1173–1186.

    Article  Google Scholar 

  • Hein, R., Crutzen, P.J., and Heinman, R. (1997). An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemcial Cycles, 11, 43–76.

    Article  Google Scholar 

  • Hofzumahaus, A., Dorn, H.P., Callies, J., Platt, U. and Ehhalt, D. (1991). Tropospheric OH concentration measurements by laser long-path absorption spectroscopy. Atmospheric Environment. 25A, 2017–2022.

    Google Scholar 

  • Hough, A.M. and Derwent, R.G. (1990). Changes in the global concentration of tropospheric ozone due to human activities. Nature. 344, 645–648.

    Article  Google Scholar 

  • Hudgens, D. and Yavitt, J. (1997). Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca, New York. Ecoscience. 4, 214–222.

    Google Scholar 

  • Intergovernmental Panel on Climate Change. (1990). Climate Change: The IPCC Scientific Assessment.. (Eds. J. T. Houghton, G.J. Jenkins and J.J. Ephraums). ? pp. (Cambridge University Press, Cambridge, U.K).

    Google Scholar 

  • Intergovernmental Panel on Climate Change. (1995). Climate Change 1994. (Eds. J. T. Houghton, L. Meira Filho, J. Bruce, H. Lee, B. Callander, E. Haites, N. Harris and K. Maskell.). 339 pp. (Cambridge University Press, Cambridge, U.K).

    Google Scholar 

  • Intergovernmental Panel on Climate Change. (1996). Climate Change 1995: the Science of Climate Change. (Eds. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell). 572 pp. (Cambridge University Press, Cambridge, U.K.).

    Google Scholar 

  • Isaksen, I.S.A. (1988). Is the oxidizing capacity of the atmosphere changing. In The Changing Atmosphere.’ (Eds. F.S. Rowland and I.S.A. Isaksen ). pp. 141–157. ( John Wiley and Sons, New York, NY ).

    Google Scholar 

  • Isaksen, I.S.A. and Stordal, F. (1986). Ozone perturbations by enhanced levels of Cfcs, N2O, and CH4: A two-dimensional diabatic circulation study including uncertainty estimates. Journal of Geophysical Research. 91, 5249–5263.

    Article  Google Scholar 

  • Johnson, D., Hill, T., Ward, G., Johnson, K., Branine, M., Carmean, B. and Lodman, D. (1993). Ruminants and other animals. In ‘Atmospheric Methane: Sources, Sinks and Role in Global Change.’ (Eds. M. Khalil ). 199–229. ( Springer-Verlag, New York, NY ).

    Chapter  Google Scholar 

  • Jouzel, J., Jouzel, N.I., Barkov, J.M., Bamola, M., Bender, J., Chappellaz, C., Genthon, V.M., Kotlyakov, V., Lipenkov, C., Lorius, J.R., Petit, D., Raynaud, G., Raisbeck, C., Ritz, T., Sowers, M., Stievenard, F., Yiou, F., and Yiou, P. (1993). Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature. 364, 407–412.

    Article  Google Scholar 

  • Khalil, M.A.K. and Rasmussen, R.A. (1985). Causes of increasing atmospheric methane: Depletion of hydroxyl radicals and the rise of emissions. Atmospheric Environment. 13, 397–407.

    Google Scholar 

  • Khalil, M and Rasmussen, R. (1987). Atmospheric methane: trends over the last 10,000 years. Atmospheric Environment. 21, 2445–2452.

    Article  Google Scholar 

  • Khalil, M, Rasmussen, R. and Moraes, F. (1993). Atmospheric methane at Cape Meares: Analysis of a high-resolution data base and its environmental implications. Journal of Geophysical Research. 98, 14753–14770.

    Article  Google Scholar 

  • Khalil, M. and Rasmussen, R. (1994a). Global emissions of methane during the last several centuries. Chemosphere. 29, 833–842.

    Article  Google Scholar 

  • Khalil, M. and Rasmussen, R. (1994b). Trends in atmospheric methane. Pure and Applied Chemistry. 66, Special Report: Methane in the Atmosphere, Commission on Atmospheric Chemistry.

    Google Scholar 

  • Khalil, M.A.K., Shearer, M. J. and Rasmussen, R.A. (1993). Methane sinks and distribution. In ‘Atmospheric Methane: Sources, Sinks and Role in Global Change.’ (Eds. M. Khalil). Springer-Verlag, 168–179. ( New York, NY ).

    Chapter  Google Scholar 

  • Khalil, M. and Rasmussen, R. (1993). Decreasing trend of methane: Unpredictability of future concentrations. Chemosphere. 26, 803–814.

    Article  Google Scholar 

  • Khalil, M., Rasmussen, R., Shearer, M., Dalluge, R., Ren, L. and Duan, C. (1998). Factors affecting methane emissions from rice fields. Journal of Geophysical Research. 103, 25219–25231.

    Article  Google Scholar 

  • Kheshgi, H.S., Jain, A.K., Kotamarthi, V.R., and Whebbles, D.J. (1999). Future atmospheric methane concentrations in the context of the stabilization of greenhouse gas concentrations. Journal of Geophysical Research, 104, 19183–19190.

    Article  Google Scholar 

  • King, G. (1997). Responses of atmospheric methane consumption by soils to global climate change. Global Change Biology. 3, 351–362.

    Article  Google Scholar 

  • Lashof, D. (1989). The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change. Climatic Change. 14, 213–242.

    Google Scholar 

  • Lassey, K.R., Lowe, D.C., Brenninkmeijer, C.A.M., and Gomez (1993). Atmospheric methane and its carbon isotopes in the southern hemisphere: their time series and an instructive model. Chemosphere, 26, 95–109.

    Article  Google Scholar 

  • Lassey, K.R., Lowe, D.C., and Manning, M.R. (1999). The trend in atmospheric methane 613C and implications for isotopic contraints on the global methane budget. Global Biogeochemical Cycles, in press.

    Google Scholar 

  • Law, K.S. and Nisbet, E.G. (1996). Sensitivity of the CH4 growth rate to changes in CH4 emissions from natural gas and coal. Journal of Geophysical Research. 101, 14387–14397.

    Article  Google Scholar 

  • Legrand, M., Lorius, C., Barkov, N. and Petrov, V. (1988). Vostok (Antarctic ice core): atmospheric chemistry changes over the last climatic cycle (160,000 years). Atmospheric Environment. 22, 317–331.

    Article  Google Scholar 

  • Lelieveld, J. and Crutzen, P.J. (1991). The role of clouds in tropospheric photochemistry. Journal of Atmospheric Chemistry. 12, 229–267.

    Article  Google Scholar 

  • Lelieveld, J. and Crutzen, P.J. (1992). Indirect chemical effects of methane on global warming. Nature. 355, 339–342.

    Article  Google Scholar 

  • Lelieveld, J., Crutzen, P. and Bnihl, C. (1993). Climate effects of atmospheric methane. Chemosphere. 26, 739–767.

    Article  Google Scholar 

  • Lelieveld, J., Crutzen, P. and Dentener, F. (1998). Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus. 50B, 128–150.

    Article  Google Scholar 

  • Le Texier, L., Solomon, S. and Garcia, R.R. (1988). The role of molecular hydrogen and methane oxidation in the water vapor budget of the stratosphere. Quarterly Journal of the Royal Meteorological Society. 114, 281–296.

    Article  Google Scholar 

  • Levine, J.S., Cofer III, W.R. and Pinto, J.P. (1993). Biomass burning. In ‘Atmospheric Methane: Sources, Sinks and Role in Global Change.’ (Eds. M. Khalil ), 299–313. ( Springer-Verlag, New York, NY ).

    Chapter  Google Scholar 

  • Lowe, D.C. and Schmidt, U. (1983). Formaldehyde ( HCHO) measurements in the nonurban atmosphere. Journal of Geophysical Research. 88, 10844–10858.

    Article  Google Scholar 

  • Lowe, D.C., Brenninkmeijer, C.A.M., Brailsford, G.W., Lassey, K.R. and Gomez, A.J. (1994). Concentration and 13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources. Journal Geophysical Research. 99, 16913–16925.

    Article  Google Scholar 

  • Lowe, D., Manning, M., Brailsford, G. and Bromley, A. (1997). The 1991–1992 atmospheric methane anomaly: Southern Hemisphere 13C increase and growth rate fluctuations. Geophysical Research Letters. 24, 857–860.

    Article  Google Scholar 

  • Lowe, D.C., Allen, W., Manning, M.R., Bromley, T., Brailsford, G., Ferretti, D., Gomez, A., Knobben, R., Martin, R., Mei, Z., Moss, R., Koshy, K., and Maata, M. (1999). Shipboard determinations of the distribution of 1380 in atmospheric methane in the Pacific. Journal of Geophysical Research, in press.

    Google Scholar 

  • Krol, M., van Leeuwen, P. and Lelieveld, J. (1998). Global OH trend inferred from methylchloroform measurements. Journal of Geophysical Research. 103, 10697–10711.

    Article  Google Scholar 

  • Lu, Y. and Khalil, M. 1991. Tropospheric OH: Model calculations of spatial, temporal, and secular variations. Chemosphere. 23, 397–444.

    Article  Google Scholar 

  • MacDonald, G.J. (1990). Role of methane clathrates in past and future climates, Climatic Change. 16, 247–281.

    Article  Google Scholar 

  • MacKay, R.M. and Khalil, M.A.K. (1991). Theory and development of a one dimensional time dependent radiative convective climate model. Chemosphere. 22, 383–417.

    Article  Google Scholar 

  • Mancinelli, R. (1995). The regulation of methane oxidation in soil. Annual Reviews of Microbiology. 49, 581–605.

    Article  Google Scholar 

  • Martinerie, P., Brasseur, G. and Granier, C. (1995). The chemical composition of ancient atmospheres: A model study constrained by ice core data. Journal Geophysical Research. 100, 14291–14304.

    Article  Google Scholar 

  • Matthews, E. (1994). Assessment of methane sources and their uncertainties. Pure and Applied Chemistry. 66, 154–161.

    Google Scholar 

  • Minami, K. and Neue, H.U. (1994). Rice paddies as a methane source. Climatic Change. 27, 13–26.

    Article  Google Scholar 

  • Minschwaner, K., Carver, R.W., Briegleb, B.P., and Roche, A.E. (1998). Infrared radiative forcing and atmospheric lifetimes of trace species based on observations from UARS. Journal of Geophysical Research, 103, 23243–23253.

    Article  Google Scholar 

  • Mitchell, C. (1993). Methane emissions from the coal and natural gas industries in the UK. Chemosphere. 26, 441–446.

    Article  Google Scholar 

  • Mitra, S., Jain, M., Kumar, S., Bandyopadhyay, S. and Kalra, N. (1999). Effect of rice cultivars on methane emission. Agriculture, Ecosystems and Environment. 73, 177–183.

    Article  Google Scholar 

  • Mosier, A., Delgado, J., Cochran, V., Valentine, D. and Parton, W. (1997a). Impact of agriculture on soil consumption of atmospheric CH4 and a comparison of CH4 and N2O flux in subarctic, temperature and tropical grasslands. Nutrient Cycling in Agroecosystems. 49, 71–83.

    Article  Google Scholar 

  • Mosier, A., Parton, W., Valentine, D., Ojima, D., Schimel, D. and Heinemeyer, 0. (1997). CH4 and N2O fluxes in the Colorado shortgrass steppe. 2. Long-term impact of land use change. Global Biogeochemical Cycle. 11, 29–42.

    Google Scholar 

  • Nakazawa, T., Machida, T., Tanaka, M., Fujii, Y., Aoki, S. and Watanabe, O. (1993). Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre-industrial/pre-agricultural era. Geophysical Research Letters. 20, 943–946.

    Article  Google Scholar 

  • Neue, H.-U., and Roger, P.A. (1993). Rice agriculture: Factors controlling emissions. Ii’ Methane: Sources, Sinks and Role in Global Change.’ (Eds. M. Khalil). pp. 254–298. ( Springer-Verlag, New York, NY ).

    Book  Google Scholar 

  • Neue, H.-U., Wassmann, R., Kludze, H., Bujun, W. and Lantin, R. (1997). Factors and processes controlling methane emissions from rice fields. Nutrient Cycling in Agroecosystems. 49, 111–117.

    Article  Google Scholar 

  • Nisbet. E. (1990a). Did the release of methane from hydrates accelerate the end of the last ice age? Canadian Journal of Earth Science. 27, 148–157.

    Article  Google Scholar 

  • Nisbet, E. (1990b). Climate change and methane. Nature. 347, 23.

    Article  Google Scholar 

  • Osborn, T. and Wigley, T. (1994). A simple model for estimating methane concentration and lifetime variations. Climate Dynamics. 9, 181–193.

    Article  Google Scholar 

  • Owens, A.J., Steed, J.M., Filkin, D.L., Miller, C. and Jesson, J.P. (1982). The potential effects of increased methane on atmospheric ozone. Geophysical Research Letters. 9, 1105–1108.

    Article  Google Scholar 

  • Owens, A.J., Hales, C.H., Filkin, D.L., Miller, C., Steed, J.M. and Jesson, J.P. (1985). A coupled one-dimensional radiative-convective, chemistry-transport model of the atmosphere: 1. Model structure and steady state perturbation calculations. Journal of Geophysical Research. 90, 2283–2311.

    Article  Google Scholar 

  • Peer, R., Thorneloe, S. and Epperson, D. (1993). A comparison of methods for estimating global methane emissions from landfills. Chemosphere. 26, 387–400.

    Article  Google Scholar 

  • Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnota, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V., Legrand, M., Lipenkov, V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 399, 429–436.

    Article  Google Scholar 

  • Penkett, S.A. (1988). Indications and causes of ozone increase in the troposphere. In The Changing Atmosphere.’ (Eds. F.S. Rowland and I.S.A. Isaksen ) pp. 91–103. ( John Wiley and Sons, New York, NY ).

    Google Scholar 

  • Pinto, J. and Khalil, M. (1991). The stability of tropospheric OH during ice ages, inter-glacial epochs and modern times. Tellus. 43B, 347–352.

    Article  Google Scholar 

  • Poppe, D., Zimmerman, J. and Dorn, H. (1995). Field data and model calculations for the hydroxyl radical. Journal of the Atmospheric Sciences. 52, 3402–3407.

    Article  Google Scholar 

  • Powlson, D., Goulding, K., Willison, T. Webster, C. and Hutsch, B. (1997). The effect of agriculture on methane oxidation in soil. Nutrient Cycling in Agroecosystems. 49, 59–70.

    Article  Google Scholar 

  • Prather, M. (1994). Lifetimes and eigenstates in atmospheric chemistry. Geophysical Research Letters. 21, 801–804.

    Article  Google Scholar 

  • Prieme, A., Christensen, S., Dobbie, K. and Smith, K. (1997). Slow increase in rate of methane oxidation in soils with time following land use change from arable agriculture to woodland. Soil Biology and Biochemistry. 29, 1269–1273.

    Article  Google Scholar 

  • Prim, R.G., Weiss, R.F., Miller, B.R., Huang, J., Alyea, F.N., Cunnold, D.M., Fraser, P.J., Hartley, D.E. and Simmonds, P. G. (1995). Atmospheric trends and lifetime of CH3CC13 and global OH concentrations. Science. 269, 187–198.

    Article  Google Scholar 

  • Quay, P., Stutsman, J., Wilbur, D., Snover, A., Dlugokencky, E. and Brown, T. (1999). The isotopic composition of atmospheric methane. Global Biogeochemcial Cycles. 13, 445–461.

    Article  Google Scholar 

  • Rahmes, T.F., Omar, A. H. and Wuebbles, D. J. (1998). Atmospheric distributions of soot particles by current and future aircraft fleets and resulting radiative forcing on climate. Journal of Geophysical Research. 103, 31657–31667.

    Article  Google Scholar 

  • Ramanathan, V. (1988). The radiative and climatic consequences of the changing atmospheric composition of trace gases. In The Changing Atmosphere.’ (Eds. F. S. Rowland and I.S.A. Isaksen ). pp. 159–186. ( John Wiley and Sons, New York, NY ).

    Google Scholar 

  • Ramanathan, V., Callis, L, Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R. and Schlesinger, M. (1987). Climate-chemical interactions and effects of changing atmospheric trace gases. Reviews of Geophysics. 25, 1441–1482.

    Article  Google Scholar 

  • Ramanathan, V., Cicerone, R.J., Singh, H.B. and Kiehl, J.T. (1985). Trace gas trends and their potential role in climate change. Journal of Geophysical Research. 90, 5547–5566.

    Article  Google Scholar 

  • Randel, W.J., Wu, F., Russell III, J.M., Roche, A., and Waters, J.W. (1998). Seasonal cycles and QBO variations in stratospheric CH4 and 1120 observed in LIARS HALOE data Journal of the Atmospheric Sciences, 55, 163–185.

    Google Scholar 

  • Randel, W., Wu, F., Russell III, J. and Waters, J. (1999). Space-time patterns of trends in stratospheric constituents derived from UARS measurements. Journal of Geophysical Research. 104, 3711–3727.

    Article  Google Scholar 

  • Rasmussen, R. A. and Khalil, M.A.K. (1981). Atmospheric methane (CH4): Trends and seasonal cycles. Journal of Geophysical Research. 86, 9826–9832.

    Article  Google Scholar 

  • Raynaud, D., Chappellaz, J., Barnola, J., Korotkevich, Y. and Lorius, C. (1988). Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core. Nature. 333, 655–657.

    Article  Google Scholar 

  • Raynaud, D., Jouzel, J., Barnola, J., Chapellaz, J., Delmas, R. and Lorius, C. (1993). The ice record of greenhouse gases. Science. 259, 926–934.

    Article  Google Scholar 

  • Rinsland, C., Levine, J. and Miles, T. (1985). Concentration of methane in the troposphere deduced from 1951 infrared solar spectra. Nature. 318, 245–249.

    Article  Google Scholar 

  • Roble, R.G. and Dickinson, R.E. (1989). How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophysical Research Letters. 16, 1441–1444.

    Article  Google Scholar 

  • Roulet, N., Moore, T., Bubier, J. and Lafleur, P. (1992) Northern fens: Methane flux and climatic change. Tellus. 44B, 100–105.

    Google Scholar 

  • Schauffler, S. and Daniel, J. (1994). On the effect of stratospheric circulation changes on trace gas trends. Journal of Geophysical Research. 99, 25747–25754.

    Article  Google Scholar 

  • Severinghaus, J., Sowers, T., Brook, E., Aley, R. and Bender, M. (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature. 391, 141–146.

    Article  Google Scholar 

  • Sigren, L., Lewis, S., Fisher, F. and Sass, R. (1997). Effects of field drainage on soil parameters related to methane production and emission from rice paddies. Global Biogeochemical Cycles. 11, 151–162.

    Article  Google Scholar 

  • Slanina, J., Warneck, P., Bazhin, N., Akimoto, H., Kieskamp, W., Khalil, M., Calvert, J., Matthews, E., Barrie, L., Wahlen, M., Schwartz, S., Tang, X. and Singh, O. (1994). Assessment of uncertainties in the projected concentrations of methane in the atmosphere. Pure and Applied Chemistry. 66, 137–140.

    Article  Google Scholar 

  • Steele, L., Dlugokencky, E, Lang, P., Tans, P., Martin, R. and Masarie, K. (1992). Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature. 358, 313–316.

    Article  Google Scholar 

  • Stern, D. and Kaufmann, R. (1996). Estimates of global anthropogenic methane emissions 1860–1993. Chemosphere. 33, 159–176.

    Article  Google Scholar 

  • Stordal, F. and Isaksen, I.S.A. (1987). Ozone perturbations due to increases in N20, CH4, and chlorocarbons: two-dimensional time-dependent calculations. Tellus. 39B, 333–353.

    Google Scholar 

  • Subak, S. (1994). Methane from the House of Tudor and the Ming Dynasty: Anthropogenic emissions in the sixteenth century. Chemosphere. 29, 843–854.

    Google Scholar 

  • Thompson, A. and Cicerone, R. (1986). Atmospheric CH4, Co and OH from 1860 to 1985. Nature. 321, 148–150.

    Article  Google Scholar 

  • Thompson, A. and Cicerone, R. (1986). Possible perturbations to atmospheric CO, CH4, and OH. Journal of Geophysical Research. 91, 10853–10864.

    Article  Google Scholar 

  • Thompson, A., Stewart, R., Owens, M. and Herwehe, J. (1989). Sensitivity of tropospheric oxidants to global chemical and climate change. Atmospheric Environment. 23, 519–532.

    Article  Google Scholar 

  • Thompson, A., Huntley, M. and Stewart, R (1990). Perturbations to tropospheric oxidants, 1985–2035: Calculations of ozone and OH in chemically coherent regions. Journal of Geophysical Research. 95, 9829–9844.

    Article  Google Scholar 

  • Thompson, A. (1992). The oxidizing capacity of the Earth’s atmosphere: Probable past and future changes. Science, 256, 1157–1165.

    Google Scholar 

  • Thompson, A., Chappellaz J., Fung, I. and Kucsera, T. (1993). The atmospheric CH4 increase since the Last Glacial Maximum: (2) Interactions with oxidants. Tellus. 45B, 242–257.

    Article  Google Scholar 

  • Thorpe, R., Law, K., Bekki, S., Pyle, J. and Nisbet, E. (1996). Is methane-driven deglaciation consistent with the ice core record? Journal of Geophysical Research. 101, 28627–28635.

    Article  Google Scholar 

  • Van Dop, H. and Krol, M. (1996). Changing trends in tropospheric methane and carbon monoxide: A sensitivity analysis of the OH radical. Journal Atmospheric Chemistry. 25, 271–288.

    Article  Google Scholar 

  • Velichko, A., Kremenetski, C., Borisova, O., Zelikson E., Nechaev, V. and Faure, H. (1998). Estimates of methane emission during the last 125,000 years in Northern Eurasia. Global and Planetary Change. 16–17, 159–180.

    Article  Google Scholar 

  • Wang, C., Prinn, R. and Sokolov, A. (1998). A global interactive chemistry and climate model: Formulation and testing. Journal of Geophysical Research. 103, 3399–3417.

    Article  Google Scholar 

  • Wang, W.C. and Molnar, G. (1985). A model study of the greenhouse effects due to increasing atmospheric CH4, N2O, CF2C 12 and CFC 13. Journal of Geophysical Research. 90, 12971–12980.

    Article  Google Scholar 

  • Wang, W.C., Wuebbles, D.J., Washington, W.M., Isaacs, R.G. and Molnar, G. (1986). Trace gases and other potential perturbations to global climate. Reviews of Geophysics. 24, 110–140.

    Article  Google Scholar 

  • Wang, W.C., Dudek, M.P., Liang, X.Z. and Kiehl, J.T. (1991). Inadequacy of effective CO2 as a proxy in simulating the greenhouse effect of other radiatively active gases. Nature. 350. 573–577.

    Article  Google Scholar 

  • Ward, G., Doxtader, K., Miller, W. and Johnson, D. (1993). Effects of intensification of agricultural practices on emission of greenhouse gases. Chemosphere. 26, 87–93.

    Article  Google Scholar 

  • Wigley, T.M.L. (1987). Relative contributions of different trace gases to the greenhouse effect. Climate Monitor. 16, 14–28.

    Google Scholar 

  • World Meteorological Organization. (1985). Scientific Assessment of Ozone Depletion: 1985. Global Ozone and Research and Monitoring Project Report 16, Geneva.

    Google Scholar 

  • World Meteorological Organization. (1989). Scientific Assessment of Ozone Depletion: 1989. Global Ozone and Research and Monitoring Project Report 20, Geneva.

    Google Scholar 

  • World Meteorological Organization. (1991). Scientific Assessment of Ozone Depletion: 1991. Global Ozone and Research and Monitoring Project Report 25, Geneva.

    Google Scholar 

  • World Meteorological Organization. (1995). Scientific Assessment of Ozone Depletion: 1994. Global Ozone and Research And Monitoring Project Report 37, Geneva.

    Google Scholar 

  • World Meteorological Organization. (1999). Scientific Assessment of Ozone Depletion: 1998. Global Ozone and Research And Monitoring Project Report 44, Geneva.

    Google Scholar 

  • Wuebbles, D.J., Luther, F.M. and Penner, J.E. (1983). Effect of coupled anthropogenic perturbations on stratospheric ozone. Journal of Geophysical Research. 88, 1444–1456.

    Article  Google Scholar 

  • Wuebbles, D.J., Wei, C.-F. and Patten, K.O. (1998). Effects on stratospheric ozone and temperature during the Maunder Minimum. Geophysical. Research Letters. 25, 523–526.

    Article  Google Scholar 

  • Wuebbles, D., Hayhoe, K. and Kotamarthi, R. (1999). Atmospheric Methane in the Global Environment. In ‘Atmospheric Methane: Sources, Sinks, and Role in Global Change.’ (Eds. M. Khalil ), ( Springer-Verlag, New York, NY ).

    Google Scholar 

  • Yagi, K., Tsuruta, H. and Minami, K. (1997). Possible options for mitigating methane emission from rice cultivation. Nutrient Cycling in Agroecosystem. 49, 213–220.

    Article  Google Scholar 

  • Zoger, M., Engel, A., McKenna, D.S., Schiller, C., Schmidt, U., and Woyke, T. (1999). Balloon-borne in situ measurements of stratospheric H20, CH4 and H2 at midlatitudes. Journal of Geophysical Research, 104, 1817–1825.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wuebbles, D.J., Hayhoe, K. (2000). Atmospheric Methane: Trends and Impacts. In: van Ham, J., Baede, A.P.M., Meyer, L.A., Ybema, R. (eds) Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9343-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9343-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5409-8

  • Online ISBN: 978-94-015-9343-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics