Skip to main content

Bulk Dissipation in Shear Layers with Suction

  • Conference paper
IUTAM Symposium on Geometry and Statistics of Turbulence

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 59))

  • 374 Accesses

Abstract

Although turbulence presents some of the most challenging unsolved problems in theoretical physics and applied mathematics, there are quantities we may hope to be able to bound even when we cannot compute them exactly. In this report we describe some of the ways of doing this within the context of a flow in a shear layer with injection and suction at the boundaries. We obtain bounds on the rate of viscous energy dissipation, valid for turbulent flows as well as for any laminar (steady or unsteady) flows, that may be directly compared to that in an exact solution for a flow with the same boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howard, L. N., J. Fluid Mech. 17, 405 (1963);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Howard, L. Ann. Rev. Fluid Mech. 4, 473 (1972).

    Article  ADS  Google Scholar 

  3. Busse, F. Adv. Applied Mech. 18, 77 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Hopf, E., Math. Annalen 117, 764 (1941).

    Article  MathSciNet  Google Scholar 

  5. Doering, C. R., and Constantin, P., Phys. Rev. Lett. 69, 1648 (1992).

    Article  ADS  Google Scholar 

  6. Marchioro, C., Physica D 74, 395 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Doering, C. R., and Constantin, P., Phys. Rev. E 49, 4087 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  8. Constantin, P. and Doering, C. R., Physica D 82, 221 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gebhardt, T., Grossmann, S., Holthaus, M. and Löhden, M., Phys. Rev. E 51, 360 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  10. Constantin, P. and Doering, C. R., Phys. Rev. E 51, 3192 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  11. Nicodemus, R., Grossmann, S. and Holthaus, M., Physica D 101, 178 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Nicodemus, R., Grossmann, S. and Holthaus, M., J. Fluid Mech. 363, 281 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Doering, C. R., and Constantin, P., Phys. Rev. E 53, 5957 (1996).

    Article  ADS  Google Scholar 

  14. Constantin, P. and Doering, C. R., Nonlinearity 9, 1049 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Doering, C. R., and Hyman, J. H., Phys. Rev. E 55, 7775 (1997).

    Article  ADS  Google Scholar 

  16. Constantin, P., Hallstrom, C., and Putkaradze, V., Physica D 125 275 (1999).

    Google Scholar 

  17. Constantin, P. and Doering, C. R., J. Stat. Phys. 94, 159 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Doering, C. R., and Constantin, P., J. Fluid Mech. 376, 263 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kerswell, R., Physica D 121, 175 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Kerswell, R., Physica D 100, 355 (1997).

    Article  ADS  MATH  Google Scholar 

  21. Wang, X., Physica D 99, 555 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  22. Prandtl, L., Angew. Math. Mech. 5, 136 (1925). For a recent experimental realization, see Lathrop, D. P., Feinberg, J. and Swinney, H. L. Phys. Rev. A 46 6390 (1992).

    Google Scholar 

  23. Doering, C. R., Spiegel, E. A., and Worthing, R. A., preprint, 1999.

    Google Scholar 

  24. Joseph, D. D., Stability of Fluid Motions, New York: Springer, 1976.

    Google Scholar 

  25. Drazin, P. and Reid, W., Hydrodynamic Stability, Cambridge, England: Cambridge University Press, 1981.

    Google Scholar 

  26. Hocking, L., Quart. J. Mech. Appl. Math. 28, 341 (1974).

    Article  Google Scholar 

  27. See for example, Vennard, J., and Street, R., Elementary Fluid Mechanics, New York: John Wiley and Sons, 1980, ch. 9, pp. 372–380.

    Google Scholar 

  28. Cadot, O., Couder, Y., Daerr, A., Douady, S. and Tsinober, A., Phys. Rev. E. 56, 427 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Doering, C.R., Worthing, R.A., Spiegel, E.A. (2001). Bulk Dissipation in Shear Layers with Suction. In: Kambe, T., Nakano, T., Miyauchi, T. (eds) IUTAM Symposium on Geometry and Statistics of Turbulence. Fluid Mechanics and Its Applications, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9638-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9638-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5614-6

  • Online ISBN: 978-94-015-9638-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics