Skip to main content

Image Compression Through Level Lines and Wavelet Packets

  • Chapter
Wavelets in Signal and Image Analysis

Part of the book series: Computational Imaging and Vision ((CIVI,volume 19))

Abstract

We present a structured image compression scheme based on a u = v + w model, where the original image u is decomposed between a sketch v and a residue w. The sketch contains all the meaningful edge curves, and the geometry of these edges is precisely detected and coded using level lines. The residue w = u - v contains all the microtextures, and it is compressed by means of a wavelet packet representation. By splitting the information contained in natural images between sketch and microtextures, we can use the most adapted representation on each of these structures. Edges are not deteriorated by ringing artefacts on the contrary of what could be observed with standard wavelet or wavelet packet compression schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L., Gousseau, Y., and Morel, J.-M. (1999). Scales in natural images and a consequence on their bounded variation norm. In Scale Space Thcories in Computer Vision, pages 247–258. Lecture Notes in Computer Science 1682. Proc. of Sec. I nt. Conf. Sc ale-Space’ 99.

    Chapter  Google Scholar 

  • Ambrosio, L., Caselles, V., Masnou, S., and Morel, J.-M. (1999). Connected components of sets of finite perimeter and applications to image processing. Preprint.

    Google Scholar 

  • Aronsson, G.(1967). Extension of functions satisfying lipschitz conditions. Ark. Math., 6:551–561.

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E. and Donoho, D. (1999). Ridgelets: a key to higher-dimensional intermittency ? Phil. Trans. R. Soc. Lond. A., pages 2495–2509.

    Google Scholar 

  • Cao, F. (1998). Absolutely minimizing lipschitz extension with discontinuous boundary data. Note aux C.R. Acad. Sci. Paris, t.327(I):563–568.

    MATH  Google Scholar 

  • Carlsson, S. (1988). Sketch based coding of grey level images. Signal Processing North-Holland, 15(1):57–83.

    Article  Google Scholar 

  • Casas, J. (1996). Morphological interpolation for image coding. In Berger, M., Deriche, R., Herlin, I., J. Jaffré, and Morel, J.-M., editors, 12th Int. Conf. on Analysis and Optimization of Systems. Images, Wavelets and PDEs. Springer.

    Google Scholar 

  • Caselles, V., Coll, B., and Morel, J.-M. (1996). A kanizsa programme. In Progress in Nonlinear Differential Equs. and their Applications, pages 35–55.

    Google Scholar 

  • Caselles, V., Coll, B., and Morel, J.-M. (1999). Topographic maps and local contrast changes in natural images. Int. J. Comp. Vision, 33 (1) :5–27.

    Article  MathSciNet  Google Scholar 

  • Caselles, V., Morel, J.-M., and Sbert, C. (1998). An axiomatic approach to image interpolation. IEEE Trans. on Imaqe Proc., 7(3):376–386.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, A., Daubechies, I., and Feauveau, J.-C. (1992). Biorthogonal bases of compactly supported wavelets. Commun. in Pure and Appl. Math., 45(5).

    Google Scholar 

  • Coifman, R. and Meyer, Y. (1992). Size properties of wavelet packets. In et al., B. R., editor, Wavelets and their Applications, pages 125–150. Jones and Bartlett.

    Google Scholar 

  • Coifman, R. and Wickerhauser, M. (1992). Entropy-based algorithms for best basis selection. IEEE Trans. on Info. Theory, 38(2):713–718.

    Article  MATH  Google Scholar 

  • Crandall, M., Ishii, H., and Lions, P.-L. (1992). User’s guide to viscosity solution of second order partial differential equations. Bull. Amer. Math. Soc, 27:1–67.

    Article  MathSciNet  MATH  Google Scholar 

  • D’Alès, J.-P., Froment, J., and Morel, J.-M. (1999) . Reconstruction visuelle et généricité. Intellectica, 1(8) :11–35.

    Google Scholar 

  • Do, M. N. and Vetterli, M. (2000). Orthonormal finite ridgelet transform for image compression. In Proc. of I CIP’2000, volume 2, pages 367–370.

    Google Scholar 

  • Donolio, D. (1997). Wedlets: nearly-minimax estimation of edges. Tech. Rep. no 515, Statistics Dep., Stanford Univ.

    Google Scholar 

  • Froment, J. (1999a). A compact and multiscale image model based on levels sets. In Nielsen, M., Johansen, P., Olsen, O. F., and Weickert, J., editors, Lecture Notes in Computer Science, number 1682, pages 152–163. Springer. Proc. Sec. Int. Conf. Scale-Space’99.

    Google Scholar 

  • Froment, J. (1999b). A functional analysis model for natural images permitting structured compression. ESAIM:COCV Control, Opt. and Cal. of Var., 4:473–495.

    Article  MathSciNet  MATH  Google Scholar 

  • Froment, J. (2000). Perceptible level lines and isoperimetric ratio. In IEEE 7th Int. Conf. on Image Proc., volume 2, pages 112–115.

    Google Scholar 

  • Froment, J. and Mallat, S. (1992). Second generation compact image coding with wavelets. In Chui, C., editor, Wavelets - A Tutorial in Theory and Applications, pages 655–678. Academic Press.

    Google Scholar 

  • Froment, J. and Moisan, L. (2000). Megawave2 v.2.00. A free and opensource Unix image processing software for reproducible research, available at http://www.cmla.ens-cachan.fr.

    Google Scholar 

  • Gorrnish, M., Lee, D., and Marcellin, M. (2000). Jpeg 2000: overview, architecture and applications. In Proc. of ICIP’2000, volume 2, pages 29–32.

    Google Scholar 

  • Kanisza, G. (1980). Grammatica del Vedere. Il Mulino, Bologna.

    Google Scholar 

  • Landau, H. and Pollak, H. (1962). Prolate spheroidal wave functions, fourier analysis and uncertainty (iii) : the dimension of the space of essentially time and bandlimited signals. Bell System Technical Journal, 41:1295–1336.

    MathSciNet  MATH  Google Scholar 

  • Mallat, S. (1997). A wavelet tour of signal processing. Academic Press.

    Google Scholar 

  • Mallat, S. and Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Trans. Pattern Recog. and Machine Intell., 14(7):710–732.

    Article  Google Scholar 

  • Marr, D. (1982). Vision. W.H.Freeman and Co.

    Google Scholar 

  • Mertins, A. (1999). Image compression via edge-based wavelet transform. Opt. Eng., 38(6):991–1000.

    Article  Google Scholar 

  • Meyer, F. (1999). Wavelet packet coder and decoder. Binaries available for Linux on Pentium processors at http://ece-www.colorado.edu/fineyer/distrib.html.

    Google Scholar 

  • Meyer, F., Averbuch, A., and Stromberg, J.-O. (2000). Fast adaptive wavelet packet image compression. IEEE Trans. on Image Proc., 9(5).

    Google Scholar 

  • Meyer, F. and Coifnan, R. (1997). Brushlets: a tool for directional image analysis and image compression. Applied and Comput. Harmonic Ana., pages 147–187.

    Google Scholar 

  • Monasse, P. and Guichard, F. (1999). Scale-space from a level lines tree. In Scale-Space Theories in Computer Vision, pages 175–186. Lecture Notes in Computer Science 1682. Proc. of Sec. Int. Conf. Scale-Space’99.

    Chapter  Google Scholar 

  • Morel, J.-M. and Solimini, S. (1995). Variational Methods in Image Segmentation. Birkhauser.

    Book  Google Scholar 

  • Pennec, E. L. and Mallat, S. (2000). Image compression with geometrical wavelets. In Proc. of ICIP’2000, volume 1, pages 661–664.

    Google Scholar 

  • Shapiro, J. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. on Signal Processing, 41(12) :3445–3462.

    Article  MATH  Google Scholar 

  • Wallace, G. (1991). Jpeg. Communications of the ACM, 34(4):31–44.

    Google Scholar 

  • Wertheimer, M. (1923). Untersuchungen zur lehre der gestalt. Psychologische Forschung. IV:301–350.

    Article  Google Scholar 

  • Witten, I., Neal, R., and Cleary, J. (1987). Arithmetic coding for data compression. Communications of the ACM, 30(6):520–540.

    Article  Google Scholar 

  • Xiong, Z., Ramchandran, K., and Orchard, M. (1998). Wavelet packets coding using space-frequency quantization. IEEE Trans. on Image Proc., 7(6) :892–898.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Froment, J. (2001). Image Compression Through Level Lines and Wavelet Packets. In: Petrosian, A.A., Meyer, F.G. (eds) Wavelets in Signal and Image Analysis. Computational Imaging and Vision, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9715-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9715-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5838-6

  • Online ISBN: 978-94-015-9715-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics