Skip to main content

The Synergy between Numerical and Perturbative Approaches to Black Holes

  • Chapter
Black Holes, Gravitational Radiation and the Universe

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 100))

  • 721 Accesses

Abstract

When I started graduate school, I began a thesis project in perturbation theory of spherical spacetimes. I still remember well how my advisor, Vincent Moncrief, an expert in perturbation theory, advised me to study a paper by Vishveshwara on black hole perturbations [1]. “That’s the best place to find the perturbation formalism”, he told me. At that time, of course, I had no idea how important this subject would continue to be years later. I was very lucky to become grounded in this subject at an “early age”, and I knew it would provide important insight into problems that were intractable in numerical relativity at that time. However I did not appreciate that even as numerical relativity would become more and more mature, harnessing hundreds of processors in parallel to solve ever larger problems, perturbation theory would continue to play such an important role in so many ways. In fact, its role in numerical relativity has become even more important in recent years, as I describe below. Vishu’s work in this area influenced me in ways that I appreciate even more as my own research moves into large scale numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. V. Vishveshwara, Phys. Rev. D 1, 2870 (1970).

    Article  ADS  Google Scholar 

  2. R. F. Stark and T. Piran, Phys. Rev. Lett. 55, 891 (1985).

    Article  ADS  Google Scholar 

  3. A. M. Abrahams, G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Phys. Rev. D 49, 5153 (1994).

    Article  ADS  Google Scholar 

  4. S. Brandt and E. Seidel, Phys. Rev. D 52, 870 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Abrahams, D. Bernstein, D. Hobill, E. Seidel, and L. Smarr, Phys. Rev. D 45, 3544 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Anninos, D. Hobill, E. Seidel, L. Smarr, and W.-M. Suen, Phys. Rev. Lett. 71, 2851 (1993).

    Article  ADS  Google Scholar 

  7. P. Anninos, D. Hobill, E. Seidel, L. Smarr, and W.-M. Suen, Phys. Rev. D 52, 2044 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Seidel and W.-M. Suen, Phys. Rev. Lett. 69, 1845 (1992).

    Article  ADS  Google Scholar 

  9. P. Anninos, G. Daues, J. Massó, E. Seidel, and W.-M. Suen, Phys. Rev. D 51, 5562 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Anninos, K. Camarda, J. Massó, E. Seidel, W.-M. Suen, and J. Towns, Phys. Rev. D 52, 2059 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  11. M. A. Scheel, S. L. Shapiro, and S. A. Teukolsky, Phys. Rev. D 51, 4208 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Marsa and M. Choptuik, Phys Rev D 54, 4929 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  13. G. B. Cook et al., (1997), gr-qc/9711078.

    Google Scholar 

  14. R. Gomez, L. Lehner, R. Marsa, and J. Winicour, (1997), gr-qc/9710138.

    Google Scholar 

  15. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, England, 1983 ).

    Google Scholar 

  16. T. Regge and J. Wheeler, Phys. Rev. 108, 1063 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. R. J. Gleiser, C. O. Nicasio, R. H. Price, and J. Pullin, Class. Quant. Gray. 13, L117 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  18. Eg., Article by Price in this volume.

    Google Scholar 

  19. F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).

    Article  ADS  Google Scholar 

  20. Eg., Article by Andersson in this volume.

    Google Scholar 

  21. V. Moncrief, Annals of Physics 88, 323 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Abrahams, Ph.D. thesis, University of Illinois, Urbana, Illinois, 1988.

    Google Scholar 

  23. E. Seidel, Phys. Rev. D 42, 1884 (1990).

    Google Scholar 

  24. G. Allen, K. Camarda, and E. Seidel, (1998), in preparation for Phys. Rev. D.

    Google Scholar 

  25. G. Allen, K. Camarda, and E. Seidel, (1998), in preparation for Phys. Rev. Lett.

    Google Scholar 

  26. A. M. Abrahams et al.,(1997), gr-qc/9709082.

    Google Scholar 

  27. D. Bernstein, D. Hobill, E. Seidel, and L. Smarr, Phys. Rev. D 50, 3760 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Bernstein, D. Hobill, E. Seidel, L. Smarr, and J. Towns, Phys. Rev. D 50, 5000 (1994).

    Article  ADS  Google Scholar 

  29. D. S. Brill, Ann. Phys. 7, 466 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  30. K. Camarda, Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1997.

    Google Scholar 

  31. K. Camarda and E. Seidel, in preparation (unpublished).

    Google Scholar 

  32. S. Brandt, K. Camarda, and E. Seidel, in preparation (unpublished).

    Google Scholar 

  33. R. H. Price and J. Pullin, Phys. Rev. Lett. 72, 3297 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. P. Anninos, R. H. Price, J. Pullin, E. Seidel, and W.-M. Suen, Phys. Rev. D 52, 4462 (1995).

    Article  ADS  Google Scholar 

  35. A. Abrahams and R. Price, Phys. Rev. D 53, 1972 (1996).

    Article  ADS  Google Scholar 

  36. J. Baker, A. Abrahams, P. Anninos, S. Brandt, R. Price, J. Pullin, and E. Seidel, Phys. Rev. D 55, 829 (1997).

    Article  ADS  Google Scholar 

  37. R. J. Gleiser, C. O. Nicasio, R. H. Price, and J. Pullin, Physical Review Letters 77, 4483 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. C. Misner, Phys. Rev. 118, 1110 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. D. S. Brill and R. W. Lindquist, Phys. Rev. 131, 471 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. K. Camarda and E. Seidel, in preparation.

    Google Scholar 

  41. Éanna É. Flanagan and S. A. Hughes, gr-qc 9701039, (1997).

    Google Scholar 

  42. K. Camarda and E. Seidel, in preparation (unpublished).

    Google Scholar 

  43. B. Briigmann, (1997), gr-qc/9708035.

    Google Scholar 

  44. C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. D 56, 3405 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. York, Phys. Rev. Lett. 75, 3377 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seidel, E. (1999). The Synergy between Numerical and Perturbative Approaches to Black Holes. In: Iyer, B.R., Bhawal, B. (eds) Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0934-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0934-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5121-9

  • Online ISBN: 978-94-017-0934-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics