Skip to main content

Selected Physiological Responses of Brassinosteroids: A Historical Approach

  • Chapter
Brassinosteroids

Abstract

Brassinosteroids are endogenous growth promoting hormones that have a structure similar to steroids in mammals. For over 70 years mammalian steroids have been known to function as hormones and, given that steroidal hormones have also been found in many multicelluar organisms, it was logical to assume a hormonal role for steroids in plants. However, even though the existence of growth stimulating chemicals had been observed in the reproductive tissues of plants in 1849, it was not until 1979 that the first plant steroidal hormone was isolated, characterised and named brassinolide. Brassinosteroids have been found in diverse species of plants and the physiological role they play in growth and development has been considerably researched. Here we review these initial physiological experiments using BRs in the context of their agronomic potential. Initial experiments showed that seeds treated with brassinosteroids increased seed yield and plant size, particularly in the case of smaller and slower growing plants. However, subsequent larger field-test trials in the United States of America resulted in disappointing results with little economic significance. This, in addition to the identification of brassinosteroid mutant plants rescued by the exogenous application of brassinolide, indicated an essential role for brassinosteroids in normal plant development. These physiological studies have shown that although brassinosteroids function in growth and development, their complex interaction with other plant hormones and environmental signals indicate that more detailed studies are needed in order to elucidate more fully the potential agronomic benefit of BRs in crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann, T. (1998a). Recent advances in brassinosteroid molecular genetics. Current Opinion in Plant Biology 1: 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Altmann, T. (1998b). A tale of dwarfs and drugs: brassinosteroids to the rescue. Trends in Genetics 14(12): 490–495.

    Article  PubMed  CAS  Google Scholar 

  • Altmann, T. (1999). Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208(1): 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Arteca, R. N. (1984). Ca+2 acts synergistically with brassinosteroid and indole-3- acetic-acid in stimulating ethylene production in etiolated mung bean hypocotyl segments. Physiologia Plantarum 62(1): 102–104.

    Article  CAS  Google Scholar 

  • Arteca, R. N., Schlagnhaufer, C. (1984). The effect of brassinosteroid and 2,4-D-L-amino acid conjugates on ethylene production by etiolated mung bean segments. Physiologia Plantarum 62(3): 445–447.

    Article  CAS  Google Scholar 

  • Asami, T., Yoshida, S. (1999). Brassinosteroid biosynthesis inhibitors. Trends in Plant Science 4(9): 348–353.

    Article  PubMed  Google Scholar 

  • Bishop, G. J. (1995). Transposon tagging in Lycopersicon esculentum. PhD Thesis University of East Anglia, UK

    Google Scholar 

  • Bishop, G. J., Harrison, K., Jones, J. D. G. (1996). The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8(6): 959–969.

    PubMed  CAS  Google Scholar 

  • Bishop, G. J., Koncz, C. (2002). Brassinosteroids and plant steroid hormone signalling. Plant Cell 14: 97–110.

    Google Scholar 

  • Bishop, G. J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J. D. G., Kamiya, Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proceedings of the National Academy of Sciences (USA) 96(4): 1761–1766.

    Article  CAS  Google Scholar 

  • Bishop G. J., Yokota, T. (2001). Plants steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant and Cell Physiology 42(2): 114–120.

    Article  PubMed  CAS  Google Scholar 

  • Bouquin, T., Meier, C., Foster, R., Nielsen, M. E., Mundy, J. (2001). Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiology 127(2): 450–458.

    Article  PubMed  CAS  Google Scholar 

  • Cerana, R., Bonetti, A., Marre, M. T., Romani, G., Lada, P., Marre, E. (1983). Effects of brassinosteroid on growth and electrogenic proton extrusion in asuki bean epicotyls. Physiologia Plantarum 59(1): 23–27.

    Article  CAS  Google Scholar 

  • Chen, T. H. H., Gusta, L. V. (1983). Abscisic acid induced freezing in cultured plant cells. Plant physiology 73: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Choe, S. W., Dilkes, B. P., Fujioka, S., Takatsuto, S., Sakurai, A., Feldmann, K. A. (1998). The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22 alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10(2): 231–243.

    PubMed  CAS  Google Scholar 

  • Clouse, S. D., Hall, A. F., Langford, M., McMorris, T. C., Baker, M. E. (1993). Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana. Journal of Plant Growth Regulation 12(2): 61–66.

    Article  CAS  Google Scholar 

  • Clouse, S. D., Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology 49: 427–451.

    Article  PubMed  CAS  Google Scholar 

  • Clouse S.D., Zurek, D. (1991). Molecular analysis of brassinolide action in plant growth and development. In Brassinosteroids: Chemistry, Bioactivity and Applications, pp 122–140. Eds H G Cuttler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Clouse, S. D., Langford, M., McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology 111: 671–678.

    Article  PubMed  CAS  Google Scholar 

  • Clouse, S. D., Zurek, D. M., McMorris, T. C., Baker, M. E. (1992). Effect of brassinolide on geneexpression in elongating soybean epicotyls. Plant Physiology 100(3): 1377–1383.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. D., Meudt, W. J. (1983). Investigations on the mechanism of the brassinosteroid response. 1. Indole-3-acetic acid metabolism and transport. Plant Physiology 72: 691–694.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, H. G. (1991). Brassinosteroids through the looking glass. In Brassinosteroids: Chemistry, Bioactivity and Applications, pp 334–345. Eds H G Cuttler, T Yokota and G Adam. American Chemical Society, Washington.

    Chapter  Google Scholar 

  • Dahse, I., Sack, H., Bernstein, M., Petzold, U., Muller, E., Vorbrodt, H. M., Adam, G. (1990). Effects of (22s, 23s)-homobrassinolide and related compounds on membrane-potential and transport of Egeria leaf-cells. Plant Physiology 93(3): 1268–1271.

    Article  PubMed  CAS  Google Scholar 

  • De Michelis, M. I., Lado, P. (1986). Effects of a brassinosteroid on growth and H+ extrusion in isolated radish cotyledons: Comparison with the effects of benzyladenine. Physiologia Plantarum 68: 603–607.

    Article  Google Scholar 

  • Dhaubhadel, S., Browning, K. S., Gallie, D. R., Krishna, P. (2002). Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant Journal 29(6): 681–691.

    Article  PubMed  CAS  Google Scholar 

  • Dhaubhadel, S., Chaudhary, S., Dobinson, K. F., Krishna, P. (1999). Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Molecular Biology 40(2): 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Evans, L. T. (1993). Crop evolution adaptation and Yield. Cambridge University Press, Cambridge. Feldmann, K. A., Marks, M. D., Christianson, M. L., Quatrano, R. S. (1989). A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243: 1351–1354.

    Google Scholar 

  • Friedrichsen, D. M., Joazeiro, C. A. P., Li, J. M., Hunter, T., Chory, J. (2000). Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiology 123(4): 1247–1255.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, H. (1997). Tracheary element differentiation. Plant Cell 9: 1147–1156.

    Article  PubMed  CAS  Google Scholar 

  • Fukuta, N., Fujioka, S., Takatsuto, S., Yoshida, S., Nakayama, M. (2002). A new brassinosteroid-deficient mutant of faba bean (Vicia faba L.). Plant and Cell Physiology 43: 184–184.

    Google Scholar 

  • Fung, S., Siddall, J. B. (1980). Stereoselective synthesis of brassinolide: a plant promoting steroidal lactone. Journal of the American Chemistry society, 102: 6580–6581.

    Article  CAS  Google Scholar 

  • Gaertner K.F., Versuche und Beobachtungen über die Bastardzeugung im Planzenreich. Stuttgart, 1849.

    Google Scholar 

  • Graham, T. O. (1959). Impact of recorded mendelian factors on the tomato 1929–1959. Report Tomato Genetics Cooperative, 9, 37.

    Google Scholar 

  • Gregory, L. E. (1981). Acceleration of plant growth through seed treatment with brassins. American Journal of Botany 68: 586–588.

    Article  CAS  Google Scholar 

  • Gregory, L. E., Mandava, N. B. (1982). The activity and interaction of brassinolide and gibberellic acid in mung bean epicotyls. Physiologia Plantarum 54: 239–243.

    Article  CAS  Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Jr, J. D. W., Steffens, G. L., Flippen-Anderson, J. L., Cook, Jr. J. C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216–217.

    Article  CAS  Google Scholar 

  • Guan, M., Roddick, J. G. (1988a). Comparison of the effects of epibrassinolide and steroidal estrogens on adventitious root-growth and early shoot development in mung bean cuttings. Physiologia Plantarum 73: 426–431.

    Article  CAS  Google Scholar 

  • Guan, M., Roddick, J. G. (1988b). Epibrassinolide-inhibition of development of excised, adventitious and intact roots of tomato (Lycopersicon esculentum)–Comparison with the effects of steroidal estrogens. Physiologia Plantarum 74: 720–726.

    Article  CAS  Google Scholar 

  • He, R., Wang, G., Wang, X. (1991). Effects of brassinolide on growth and chilling resistance of maize seedlings. In Brassinosteroids: Chemistry, Bioactivity and Applications, pp 220–230. Eds H G Cuttler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Hernández-Bravo, G. (1967). Two new dwarf mutants and their linkage relations. Report Tomato Genetics Cooperative, 17, 30–31.

    Google Scholar 

  • Hewitt, S., Hillman, J. R. (1980). Steroidal estrogens and adventitious root formation in Phaseolus cuttings. Annals of Botany 46: 153–164.

    CAS  Google Scholar 

  • Hewitt, F. R., Hough, T., Oneill, P., Sasse, J. M., Williams, E. G., Rowan, K. S. (1985). Effect of brassinolide and other growth-regulators on the germination and growth of pollen tubes of Prunus avium using a multiple hanging-drop assay. Australian Journal of Plant Physiology 12(2): 201–211.

    Article  CAS  Google Scholar 

  • Hong, Z., Ueguchi-Tanaka, M., Shimizu-Sato, S., Inukai, Y., Fujioka, S., Shimada, Y., Takatsuto, S., Agetsuma, M., Yoshida, S., Watanabe, Y., Uozu, S., Kitano, H., Ashikari, M., Matsuoka, M. (2002). Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal 32, 4: 495–508.

    Article  PubMed  CAS  Google Scholar 

  • Hooley, R. (1996). Plant steroid hormones emerge from the dark. Trends in Genetics 12(8): 281–283.

    Article  PubMed  CAS  Google Scholar 

  • Ikekawa, N., Zhao, Y. (1991). Application of 24-epibrassinolide in agriculture. In Brassinosteroids: Chemistry, Bioactivity and Applications, pp 280–291. Eds H G Cuttler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Ishiguro M., Takatsuto, S., Morisaki, M. (1980). Synthesis of brassinolide, a steroidal lactone with plant-growth promoting activity. J.Chem. Soc. Chemical Communication 1980: 962–964.

    Google Scholar 

  • Iwasaki, T., Shibaoka, H. (1991). Brassinosteroids act as regulators of tracheary-element differentiation in isolated zinnia mesophyll-cells. Plant and Cell Physiology 32: 1007–1014.

    CAS  Google Scholar 

  • Jang, J. C., Fujioka, S., Tasaka, M., Seto, H., Takatsuto, S., Ishii, A., Aida, M., Yoshida, S., Sheen, J. (2000). A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes and Development 14(12): 1485–1497.

    PubMed  CAS  Google Scholar 

  • Khripach, V.A. Zhabinskii, V.N., Groot, A.E. (1999). Practical applications and toxicology. In Brassinosteroids: A new class of plant hormones. pp. 325–346. Eds V.A. Khripach, V.N. Zhabinskii, and A.E. Groot. Academic Press. London.

    Google Scholar 

  • Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S., Clouse, S. D. (2000). A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology 122(1): 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M., Karssen CM., 1994. Seed dormancy and germination. In Arabidopsis Eds C R Somerville and E M Meyerowitz. pp. 313–334. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Krizek, D. T., Mandava, N. B. (1983a). Influence of spectral quality on the growth-response of intact bean-plants to brassinosteroid, a growth-promoting steroidal lactone.1. Stem elongation and morphogenesis. Physiologia Plantarum 57(3): 317–323.

    Article  CAS  Google Scholar 

  • Krizek, D.T., Mandava, N.B. (1983b). Influence of spectral quality on the growth response of intact bean plants to brassinosteroid, a growth-promoting steroidal lactone. 2. Chlorophyll content and partitioning of assimilate. Physiologia Plantarum 57: 324–329.

    Article  CAS  Google Scholar 

  • Kulaeva, O. N., Burkhanova, E. A., Fedina, A. B., Khokhlova, V. A., Bokebayeva, G. A., Vorbrodt, H. M., Adam, G. (1991). Effects of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. In Brassinosteroids: Chemistry, Bioactivity and Applications. Eds H G Cutler, T Yokota and G Adam, pp. 141–155. American Chemical Society, Washington.

    Chapter  Google Scholar 

  • Li, J. M., Nagpal, P., Vitart, V., McMorris, T. C., Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272(5260): 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. M., Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90(5): 929–938.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. M., Chory, J. (1999). Brassinosteroid actions in plants. Journal of Experimental Botany 50: 275–282.

    CAS  Google Scholar 

  • Li, J. M., Nam, K. H., Vafeados, D., Chory, J. (2001). BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiology 127(1): 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, E. (1960). Interaction of gibberellin and auxins in lamina joints of excised rice leaves. Physiologia Plantarum 13: 214–226.

    Article  CAS  Google Scholar 

  • Maeda, E. (1965). Rate of lamina inclination in excised rice leaves. Physiologia Plantarum 18: 813–827.

    Article  CAS  Google Scholar 

  • Mandava, N. B. (1988). Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology 39: 23–52.

    Article  CAS  Google Scholar 

  • Mandava, N. B., Sasse, J.M., Yopp, J.H. (1981). Brassinolide, a growth promoting steroidal lactone 2. Activity in selected gibberellin and cytokinin bioassays. Physiologia Plantarum 53(4): 453–461.

    Article  CAS  Google Scholar 

  • Marumo, S., Hattori, H., Abe, H., Nonoyama, Y., Munakata, K. (1968). The presence of novel plant growth regulators in leaves of Distylium racemosum Sieb. et Zucc. Agricultural and Biological Chemistry 32: 528–529.

    Article  CAS  Google Scholar 

  • Mayumi, K., Shibaoka, H. (1995). A possible double role for brassinolide in the reorientation of cortical microtubules in the epidermal cells of Azuki bean epicotyls. Plant and Cell Physiology 36: 173–181.

    CAS  Google Scholar 

  • McKay, M. J., Ross, J. J., Lawrence, N. L., Cramp, R. E., Beveridge, C. A., Reid, J. B. (1994). Control of internode length in Pisum sativum–Further evidence for the involvement of indole-3-acetic-acid. Plant Physiology 106(4): 1521–1526.

    PubMed  CAS  Google Scholar 

  • Milach, S. C. K., Rines, H. W., Phillips, R. L. (2002). Plant height components and gibberellic acid response of oat dwarf lines. Crop Science 42(4): 1147–1154.

    Article  CAS  Google Scholar 

  • Milborow, B. V., Pryce, R. J. (1973). The brassins. Nature 243: 46.

    Article  Google Scholar 

  • Mitchell, J. D., Gregory, L. E. (1972). Enhancement of overall plant growth, a new response to brassins. Nature New Biology 239: 253–254.

    PubMed  CAS  Google Scholar 

  • Mitchell, J. D., Mandava, N. B., Worley, J. F., Plimmer, J. R., Smith, M. V. (1970). Brassins–a new family of plant hormones from rape pollen. Nature 225: 1065–1066.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J. D., Skaggs, D. P., Anderson, W. P. (1951). Plant growth-stimulating hormones in immature bean seeds. Science 114: 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J. D., Whitehead, M. R. (1941). Responses of vegetative parts of plants following application of extract of pollen from zea mays. Botanical Gazette 102: 770–791.

    Article  Google Scholar 

  • Mitchell J.W., Mandava N., Worley J.F., Drowne M.E. (1971). Fatty horomones in pollen and immature seeds of bean. Journal of Agriculture and Food Chemistry 19: 91–393

    Article  Google Scholar 

  • Montoya, T., Nomura, T., Farrar, K., Kaneta, T., Yokota, T., Bishop, G.J. (2002). Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14: 3163–3176.

    Article  PubMed  CAS  Google Scholar 

  • Mori, M., Nomura, T., Ooka, H., Ishizaka, M., Yokota, T., Sugimoto, K., Okabe, K., Kajiwara, H., Satoh, K., Yamamoto, K., Hirochika, H., Kikuchi, S. (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology 130(3): 1152–1161.

    Article  PubMed  CAS  Google Scholar 

  • Morishita, T., Abe, H., Uchiyama, M., Marumo, S., Takatsuto, S., Ikekawa, N. (1983). Evidence for plant- growth promoting brassinosteroids in leaves of Thea sinensis. Phytochemistry 22(4): 1051–1053.

    Article  CAS  Google Scholar 

  • Munoz, F. J., Labrador, E., Dopico, B. (1998). Brassinolides promote the expression of a new Cicer arietinum beta-tubulin gene involved in the epicotyl elongation. Plant Molecular Biology 37(5): 807–817.

    Article  PubMed  CAS  Google Scholar 

  • Mussig, C., Fischer, S., Altmann, T. (2002). Brassinosteroid-regulated gene expression. Plant Physiology 129(3): 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K. A., Tax, F. E. (1999). Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiology 121(3): 743–752.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, T., Bishop, G., Reid, J., Yokota, T. (2002). Regulation of expression of the brassinosteroid receptor lka gene in pea. Plant and Cell Physiology 43: 186–186.

    Article  Google Scholar 

  • Nomura, T., Kitasaka, Y., Takatsuto, S., Reid, J. B., Fukami, M., Yokota, T. (1999). Brassinosteroid/sterol synthesis and plant growth as affected by Ika and Ikb mutations of pea. Plant Physiology 119(4): 1517–1526.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, T., Nakayama, M., Reid, J. B., Takeuchi, Y., Yokota, T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiology 113: 31–37.

    PubMed  CAS  Google Scholar 

  • Peng, J. R., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., Beales, J., Fish, L. J., Worland, A. J., Pelica, F., Sudhakar, D., Christou, P., Snape, J. W., Gale, M. D., Harberd, N. P. (1999). ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741): 256–261.

    Google Scholar 

  • Pilet, P. E., Elliott, M. C., Moloney, M. M. (1979). Endogenous and exogenous auxin in the control of root growth. Planta 146: 405–408.

    Article  CAS  Google Scholar 

  • Reid, J. B., Ross, J. J. (1989). Internode length in Pisum–2 Further gibberellin-insensitivity genes, Lka and Lkb. Physiologia Plantarum 75(1): 81–88.

    Article  CAS  Google Scholar 

  • Robertson, A. J., Ishikawa, M., Gusta, L. V., MacKenzie, S. L. (1994). Abscisic acid induced heat tolerance in Bromus inermis Leyss cell-suspension cultures. Heat stable, abscisic acid responsive polypeptides in combination with sucrose confer enhanced thermostability. Plant Physiology 105: 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Romani, G., Marre, M. T., Bonetti, A., Cerana, R., Lado, P., Marre, E. (1983). Effects of a brassinosteroid on growth and electrogenic proton extrusion in maize root segments. Physiologia Plantarum 59(4): 528–532.

    Article  CAS  Google Scholar 

  • Scheer, J. M., Ryan, C. A. (2002). The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proceedings of the National Academy of Sciences (USA) 99(14): 9585–9590.

    Article  CAS  Google Scholar 

  • Schlagnhaufer, C., Arteca, R. N., Yopp, J. H. (1984). Evidence that brassinosteroid stimulates auxin-induced ethylene synthesis in mung bean hypocotyls between S-adenosylmethionine and 1-aminocyclopropane1-carboxylic acid. Physiologia Plantarum 61(4): 555–558.

    Article  CAS  Google Scholar 

  • Schluter, U., Kopke, D., Altmann, T., Mussig, C. (2002). Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient cbb1 mutant. Plant Cell and Environment 25(6): 783–791.

    Article  Google Scholar 

  • Schultz, L., Kerckhoffs, L. H. J., Klahre, U., Yokota, T., Reid, J. B. (2001). Molecular characterization of the brassinosteroid-deficient lkb mutant in pea. Plant Molecular Biology 47(4): 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, K., Vafeados, D., McCarthy, M., Sze, H., Wilkins, T., Chory, J. (1999). The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes and Development 13(24): 3259–3270.

    Article  PubMed  CAS  Google Scholar 

  • Steber, C. M., McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiology 125(2): 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Steffens, G. L. (1991). U.S. Department of agriculture brassins project: 1970–1980. In Brassinosteroids: Chemistry Bioactivity and Applications, pp.3–17. Eds. H G Cutler, T Yokota and G Adam, American Chemical Society, Washington.

    Google Scholar 

  • Symons, G. M., Schultz, L., Kerckhoffs, L. H. J., Davies, N. W., Gregory, D., Reid, J. B. (2002). Uncoupling brassinosteroid levels and de-etiolation in pea. Physiologia Plantarum 115(2): 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Szekeres, M., Nemeth, K., KonczKalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in arabidopsis. Cell 85(2): 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Takeno, K., Pharis, R. P. (1982). Brassinosteroid induced bending of the leaf lamina of dwarf rice seedlings and auxin-mediated phenomenon. Plant and Cell Physiology 23: 1275–1281.

    CAS  Google Scholar 

  • Tominaga, R., Sakurai, N., Kuraishi, S. (1994). Brassinolide induced elongation of inner tissues of segments of squash Cucurbit-maxima Duch hypocotyls. Plant and Cell Physiology 35: 1103–1106.

    CAS  Google Scholar 

  • Wada, K., Marumo, S., Ikekawa, N., Morisaki, M., Mori, K. (1981). Brassinolide and homo-brassinolide promotion of lamina inclination of rice seedlings. Plant and Cell Physiology 22: 323–325.

    CAS  Google Scholar 

  • Wang, T. W., Cosgrove, D. J., Arteca, R. N. (1993). Brassinosteroid stimulation of hypocotyl elongation and wall relaxation in pakchoi Brassica-chinensis cv Lei-Choi hypocotyls. Plant Physiology 101: 965–968.

    PubMed  CAS  Google Scholar 

  • Wilen, R., Sacco, M., Gusta, L. V., Krishna, P. (1995). Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus-inermis) Cell cultures. Physiologia Plantarum 95: 195–202.

    Article  CAS  Google Scholar 

  • Xu, W., Purugganan, M. M., Polisensky, D. H., Antosiewicz, D. M., Fry, S. C., Braam, J. (1995). Arabidopsis Tch4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7(10): 1555–1567.

    Google Scholar 

  • Yamamoto, R., Demura, T., Fukuda, H. (1997). Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant and Cell Physiology 38(8): 980–983.

    Article  PubMed  CAS  Google Scholar 

  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12(9): 1591–1605.

    PubMed  CAS  Google Scholar 

  • Yi, H. C., Joo, S., Nam, K. H., Lee, J. S., Kang, B. G., Kim, W. T. (1999). Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1- carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Molecular Biology 41(4): 443–454.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, T. (1997). The structure, biosynthesis and function of brassinosteroids. Trends in Plant Science 2(4): 137–143.

    Article  Google Scholar 

  • Yopp, J., Colclasure, G. C., Mandava, N. B. (1979). Effects of brassin-complex on auxin and gibberellin mediated events in the morphogenesis of etiolated bean hypocotyl. Physiologia Plantarum 46: 247–254.

    Article  CAS  Google Scholar 

  • Yopp, J., Mandava, N. B., M, S. J. (1981). Brassinolide, a growth promoting steroidal lactone. 1-Activity in selected auxin bioassays. Physiologia Plantarum 53(4): 445–452.

    Article  CAS  Google Scholar 

  • Yu, M. H. (1982). The dwarf curly leaf tomato. Journal of Heredity 73: 270–272.

    Google Scholar 

  • Yu, Y. B., Yang, S. F. (1979). Auxin induced ethylene production and its inhibition by amino ethoxy vinylglycine and cobalt ion. Plant Physiology 64: 1074–1077.

    Article  PubMed  CAS  Google Scholar 

  • Zurek, D. M., Clouse, S. D. (1994). Molecular-cloning and characterization of a brassinosteroid regulated gene from elongating Soybean (Glycine-Max L.) epicotyls. Plant Physiology 104(1): 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Zurek, D. M., Rayle, D. L., McMorris, T. C., Clouse, S. D. (1994). Investigation of gene expression, growth-kinetics and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiology 104(2): 505–513.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castle, J., Montoya, T., Bishop, G.J. (2003). Selected Physiological Responses of Brassinosteroids: A Historical Approach. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0948-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0948-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6464-6

  • Online ISBN: 978-94-017-0948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics