Skip to main content

A Limit on the Longitudinal Graviton Mass

  • Conference paper
Causality and Locality in Modern Physics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 97))

Abstract

By comparing the linearized Einstein field equations for a conformally flat and vacuum dominated spacetime with the gravitoelectromagnetic Proca equations for a dust dominated spacetime, we deduce that the longitudinal graviton mass is proportional to the square root of the cosmic (or vacuum-spacetime) mass density. We establish a stronger limit for the longitudinal graviton mass (m gl ≤ 9.592 × 10−66 g) as compared to the earlier known limits (m gl ≤ 2 × 10−62 g). We also obtain that the energy density of the vacuum is half that of the energy density of cosmic matter. This result agrees just about with the relation between the density of the vacuum energy and the energy of cosmic matter that has been proposed in order to solve the age old problem of cosmological models containing dark matter and critical total energy density (see, e.g., S Dodelson, E. I. Gates and M. S. Turner, Cold Dark Matter, Science 274 69 (1996) [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dodelson, S., Gates, E. I. and Turner, M. S.: Cold Dark Matter, Science 274 (1996), 69–75.

    Article  ADS  Google Scholar 

  2. Ciubotariu, C.: Absorption of gravitational waves, Phys. Lett. A158 (1991), 27–30.

    Article  Google Scholar 

  3. Harris, E. G.: Analogy between general relativity and electromagnetism for slowly moving particles in weak gravitational fields, Am. J. Phys 59 (1991), 421–425.

    Article  ADS  Google Scholar 

  4. Braginski, V. B., Polnarev, A. G., and Thorne, K. S.: Foucault Pendulum at the South Pole: Proposal for an Experiment to Detect the Earth’s General Relativistic Gravitomagnetic Field, Phys. Rev. Lett. 53 (1984), 863–866.

    Article  ADS  Google Scholar 

  5. Fulton, T., Rohrlich, F., and Witten, L.: Conformal invariance in physics, Rev. Mod. Phys. 34 (1962), 442–457.

    Google Scholar 

  6. Hawking, S. W. and Ellis, G. F. R.: The Large Scale Structure of Spacetime, Cambridge University Press, 1973.

    Google Scholar 

  7. Einstein, A.: The Meaning of Relativity, Princeton University Press, 1955.

    Google Scholar 

  8. Gron, O.: Repulsive gravitation and inflationary universe models, Am. J. Phys. 54 (1986), 46–52.

    Article  ADS  Google Scholar 

  9. Israelit, M. and Rosen, N.: The Static Character of Prematter Particles, Found. Phys. 22 (1992), 549–554.

    Article  MathSciNet  ADS  Google Scholar 

  10. Israelit, M. and Rosen, N.: Weylian Dark Matter and Cosmology, Found. Phys. 24 (1994), 901–915.

    Article  ADS  Google Scholar 

  11. Misner, C. W., Thorne, K. S., and Wheeler, J. A.: Gravitation, Freeman, San Francisco, 1973.

    Google Scholar 

  12. Bonnor, W. B. and Cooperstock, F. I.: Does the Electron Contain Negative Mass?, Phys. Lett. A 139 (1989), 442–444.

    Article  ADS  Google Scholar 

  13. Chow, T. L.: Answer to Question 32 [“How do gravitons interact with black hole?”], Am. J. Phys. 64 (1996), 1449.

    Google Scholar 

  14. Collins, P. D. B., Martin, A. D., and Squires, E. J.: Particle Physics and Cosmology, Wiley, New York, 1989, p. 35.

    Book  Google Scholar 

  15. Argyris, J. and Ciubotariu, C.: Massive gravitons in general relativity, Australian Journal of Physics 50 no.5 (1997) (in course of publication).

    Google Scholar 

  16. Anderson, J. L.: Principles of Relativity Physics, Academic Press, New York, 1967.

    Google Scholar 

  17. Goldhaber, A. S. and Nieto, M. M.: Mass of the graviton, Phys. Rev. 9 (1974), 1119–1121.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Argyris, J., Ciubotariu, C. (1998). A Limit on the Longitudinal Graviton Mass. In: Hunter, G., Jeffers, S., Vigier, JP. (eds) Causality and Locality in Modern Physics. Fundamental Theories of Physics, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0990-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0990-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5092-2

  • Online ISBN: 978-94-017-0990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics