Skip to main content

Seasonal plasticity and life-cycle adaptations in butterflies

  • Chapter
Insect life-cycle polymorphism

Part of the book series: Series Entomologica ((SENT,volume 52))

Abstract

Plasticity is a major component of phenotypic variation, interrelated with genetic differentiation through the existence of genetic variation in reaction norms. Phenotypic plasticity also makes experimental tests of life-history theory possible, because responses to the environment can be tested against predictions. I report results from studies on life-cycle regulation and seasonal plasticity in life-history adaptations in temperate butterflies, especially Polygonia c-album, Pararge aegeria and Pieris napi. The optimal development time of individuals should vary within and among populations, and life-history theory would expect size differences to follow as a consequence. Predictions regarding variation in development time and size were tested using “split-brood” techniques to obtain population-level estimates of individual reaction norms. In all three species, individuals destined for the diapause pathway took longer to develop than those in the same brood destined for reproduction the same season, and females took longer than males (as predicted by protandry theory). P. aegeria and P. c-album also varied development time within pathways, in a quantitative response to photoperiods indicating the progression of the season. In all three species, variation in development time was mostly a result of plasticity in rates of growth and development, and size at emergence therefore typically was not strongly affected. I conclude that it is often profitable to view life histories and developmental pathways as “chosen” by the insect rather than passively given by the environment, and hence to apply the methods of behavioural ecology: experimental techniques and optimality theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrewartha, H.G. 1952. Diapause in relation to the ecology of insects. Biol. Rev. 27:50–107.

    Google Scholar 

  • Beck, S.D. 1980. Insect Photoperiodism. 2nd edition. Academic Press, New York, London. 387 pp.

    Google Scholar 

  • Blouin, M.S. 1992. Comparing bivariate reaction norms among species: time and size at metamorphosis in three species of Hyla ( Anura: Hylidae). Oecologia 90: 288–293.

    Google Scholar 

  • Bradshaw, A.D. 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–153.

    Google Scholar 

  • Bradshaw, W.E. 1976. Geography of photoperiodic response in a diapausing mosquito. Nature 262: 384–385.

    Article  PubMed  CAS  Google Scholar 

  • Brakefield, P.M. & Reitsma, N. 1991. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Ent. 16: 291–303.

    Google Scholar 

  • Brooks, D.R. & McLennan, D.H. 1991. Phylogeny, Ecology, and Behavior. A Research Program in Comparative Biology. University of Chicago Press, Chicago. 434 pp.

    Google Scholar 

  • Brown, V.K. & Hodek, I., editors. 1983. Diapause and Life Cycle Strategies in Insects. Junk, The Hague. 283 pp.

    Google Scholar 

  • Case, T.J. 1978. On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53: 243–282.

    Google Scholar 

  • Cole, L.C. 1954. The population consequences of life history phenomena. Q. Rev. Biol. 29: 103–137.

    Google Scholar 

  • Danilevski, A.S. 1965. Photoperiodism and Seasonal Development of Insects. (English edition)Oliver & Boyd, Edinburgh, London. 283 pp. (Russian original published in 1961 )

    Google Scholar 

  • Danks, H.V. 1987. Insect Dormancy: An Ecological Perspective. Biological Survey of Canada ( Terrestrial Arthropods ), Ottawa. 439 pp.

    Google Scholar 

  • Darwin, C. 1871. The Descent of Man, and Selection in Relation to Sex. J. Murray, London. 898 pp. Dingle, H. 1992. Food level reaction norms in size-selected milkweed bugs (Oncopeltus fasciatus). Ecol. Ent. 17: 121–126.

    Google Scholar 

  • Dingle, H. & Hegmann, J.P., editors. 1982. Evolution and Genetics of Life Histories. Springer-Verlag, New York. 250 pp.

    Chapter  Google Scholar 

  • Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15.

    Google Scholar 

  • Fox, L.R. & Morrow, P.A. 1981. Specialization: Species property or local phenomenon? Science 211: 887–893.

    Google Scholar 

  • Futuyma, D.J. 1986. Evolutionary Biology. 2nd edition. Sinauer, Sunderland. 600 pp.

    Google Scholar 

  • Gebhardt, M.D. & Stearns, S.C. 1988. Reaction norms for developmental time and weight at eclosion in Drosophila mercatorum. J. Evol. Biol. 1: 335–354.

    Google Scholar 

  • Giesel, J.T., Murphy, P. & Manlove, M. 1982. An investigation of the effects of temperature on the genetic organization of life history indices in three populations of Drosophila melanogaster. In: Evolution and Genetics of Life Histories. H. Dingle & J.P. Hegmann, editors. Springer-Verlag, New York. pp 189–207.

    Google Scholar 

  • Groeters, F.R. & Dingle, H. 1988. Genetic and maternal influences on life history plasticity in milkweed bugs (Oncopeltus): Response to temperature. J. Evol. Biol. 1: 317–333.

    Google Scholar 

  • Gupta, A.P. & Lewontin, R.C. 1982, A study of reaction norms in natural populations of Drosophila pseudoobscura. Evolution 36: 934–948.

    Google Scholar 

  • Harvey, P.H. & Pagel, M.D. 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford. 239 pp.

    Google Scholar 

  • Hillesheim, E. & Stearns, S.C. 1991. The responses of Drosophila melanogaster to artificial selection on body weight and its phenotypic plasticity in two larval food environments. Evolution 45: 1909–1923.

    Google Scholar 

  • Ismail, S. & Fuzeau-Braesch, S. 1976. Programmation de la diapause chez Gryllus campestris. J. Insect Physiol. 22: 133–139.

    Google Scholar 

  • Iwasa, Y., Odendal, F.J., Murphy, D.D., Ehrlich, P.R. & Launer, A.E. 1983. Emergence patterns in male butterflies: A hypothesis and a test. Theor. Popul. Biol. 23: 363–379.

    Google Scholar 

  • Langer, T.W. 1958. Nordens Dagsommerfugle. Munksgaards Forlag & Skandinavisk Bogforlag, Odense. 344 pp.

    Google Scholar 

  • Lees, A.D. 1955. Physiology of Diapause in Arthropods. Cambridge University Press, Cambridge. 151 pp.

    Google Scholar 

  • Masaki, S. 1978. Seasonal and latitudinal adaptations in the life cycles of crickets. In: Evolution of Insect Migration and Diapause. H. Dingle, editor. Springer-Verlag, Berlin, New York. pp. 72–100.

    Chapter  Google Scholar 

  • Mousseau, T.A. & Dingle, H. 1991. Maternal effects in insect life histories. A. Rev. Ent. 36: 511–534.

    Google Scholar 

  • Mousseau, T.A. & Roff, D.A. 1989. Adaptation to seasonality in a cricket: Patterns of phenotypic and genotypic variation in body size and diapause expression along a cline in season length.Evolution 43: 1483–1496.

    Google Scholar 

  • Moller Andersen, M. 1993. The evolution of wing polymorphism in water striders ( Gerridae ): A phylogenetic approach. Oikos 67: 433–443.

    Google Scholar 

  • Newman, R.A. 1992. Adaptive plasticity in amphibian metamorphosis. Bioscience 42: 671–678.

    Article  Google Scholar 

  • Niehaus, M. 1982. Technique for rearing the small tortoiseshell Aglais urticae ( Nymphalidae) without diapause at different temperatures. Entomologia Gen. 7: 365–373.

    Google Scholar 

  • Nylin, S. 1988. Host plant specialization and seasonality in a polyphagous butterfly, Polygonia c-album ( Nymphalidae ). Oikos 53: 381–386.

    Google Scholar 

  • Nylin, S. 1989. Effects of changing photoperiods in the life cycle regulation of the comma butterfly, Polygonia c-album (Nymphalidae). Ecol. Ent. 14: 209–218.

    Google Scholar 

  • Nylin, S. 1991. The phylogenetic approach to ecology. Review of: Brooks, D.R. & McLennan, D.H. Phylogeny, ecology and behavior. Evolution 45: 1731–1733.

    Google Scholar 

  • Nylin, S. 1992. Seasonal plasticity in life history traits: Growth and development in Polygonia c-album ( Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 47: 301–323.

    Google Scholar 

  • Nylin, S. & Janz, N. 1993. Oviposition preference and larval performance in Polygonia c-album (Lepidoptera: Nymphalidae ): The choice between bad and worse. Ecol. Ent. 18: 394–398.

    Google Scholar 

  • Nylin, S. & Svärd, L. 1990. Latitudinal patterns in the size of European butterflies. Holarct. Ecol. 14: 192–202.

    Google Scholar 

  • Nylin, S., Wickman, P.-O. & Wiklund, C. 1989. Seasonal plasticity in growth and development of the speckled wood butterfly, Pararge aegeria (Satyrinae). Biol. J. Linn. Soc. 38: 155–171.

    Google Scholar 

  • Nylin, S., Wiklund, C., Wickman, P.-O. & Garcia-Barros, E. 1993. Absence of trade-offs between early male emergence and sexual size dimorphism in a butterfly. Ecology 74: 1414–1427.

    Google Scholar 

  • Parker, G.A. & Courtney, S.P. 1983. Seasonal incidence: Adaptive variation in the timing of lifehistory stages. J. Theor. Biol. 105: 147–155.

    Google Scholar 

  • Petersen, B. 1947. Die geographische Variation einiger Fennoskandischer Lepidopteren. Zool. Bidrag. Uppsala 26. 531 pp.

    Google Scholar 

  • Real, L.A. 1992. Introduction to the symposium. Am. Nat. 140: S1 - S4.

    Article  Google Scholar 

  • Roff, D.A. 1980. Optimizing development time in a seasonal environment: The `ups and downs’ of clinal variation. Oecologia 45: 202–208.

    Google Scholar 

  • Roff, D.A. 1983. Phenological adaptation in a seasonal environment: A theoretical perspective. In: Diapause and Life Cycle Strategies in Insects. V.K. Brown & I. Hodek, editors. Junk, The Hague. pp 253–270.

    Google Scholar 

  • Roff, D.A. 1992. The Evolution of Life Histories: Theory and Analysis. Chapman & Hall, New York. 535 pp.

    Google Scholar 

  • Ronquist, F. & Nylin, S. 1990. Process and pattern in the evolution of species associations. Syst. Zool. 39: 323–344.

    Google Scholar 

  • Saunders, D.S. 1982. Insect Clocks. 2nd edition. Pergamon Press, Oxford. 280 pp.

    Google Scholar 

  • Schlichting, C.D. 1986. The evolution of phenotypic plasticity in plants. A. Rev. Ecol. Syst. 17: 667–693.

    Google Scholar 

  • Schroeder, L.A. 1986. Changes in tree leaf quality and growth performance of lepidopteran larvae. Ecology 67: 1628–1636.

    Article  Google Scholar 

  • Scriber, J.M. & Lederhouse, R.C. 1992. The thermal environment as a resource dictating geographic patterns of feeding specialization of insect herbivores. In: Effects of Resource Distribution on Animal-plant Interactions. M.R. Hunter, T. Ohgushi & P.W. Price, editors. Academic Press, New York. pp 429–466.

    Google Scholar 

  • Shapiro, A.M. 1976. Seasonal polyphenism. Evol. Biol. 9: 259–333.

    Google Scholar 

  • Singer, M.C. 1982. Sexual selection for small size in male butterflies. Am. Nat. 119:440–443. Stearns, S.C. 1976. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51:3–47. Stearns, S.C. 1989. Trade-offs in life history evolution. Funct. Ecol. 3: 259–268.

    Google Scholar 

  • Stearns, S.C. 1992. The Evolution of Life Histories. Oxford University Press, Oxford. 249 pp. Stearns, S.C. & Koella, J.C. 1986. The evolution of phenotypic plasticity in life-history traits:

    Google Scholar 

  • Predictions of reaction norms for age and size at maturity. Evolution 40:893–914.

    Google Scholar 

  • Stearns, S.C., de Jong, G. & Newman, R. 1991. The effects of phenotypic plasticity on genetic correlations. Trends Ecol. Evol. 6: 122–126.

    Google Scholar 

  • Tauber, C.A. & Tauber, M.J. 1982. Evolution of seasonal adaptations and life history traits in Chrysopa: Response to diverse selective pressures. In: Evolution and Genetics of Life Histories. H. Dingle & J.P. Hegmann, editors. Springer-Verlag, New York. pp. 51–72.

    Google Scholar 

  • Tauber, C.A. & Tauber, M.J. 1992. Phenotypic plasticity in Chrysoperla: Genetic variation in the sensory mechanism and in correlated responses. Evolution 46: 1754–1773.

    Google Scholar 

  • Tauber, M.J., Tauber, C.A. & Masaki, S. 1986. Seasonal Adaptations of Insects. Oxford University Press, Oxford. 411 pp.

    Google Scholar 

  • Thompson, J.N. 1988. Evolutionary ecology of the relationship between oviposition preference and

    Google Scholar 

  • performance of offspring in phytophagous insects. Entomologia Exp. Appl. 47: 3–14.

    Google Scholar 

  • Thornhill, R. & Alcock, J. 1983. The Evolution of Insect Mating Systems. Harvard University Press, Cambridge, Mass. 547 pp.

    Google Scholar 

  • Wanntorp, H.E. 1983. Historical constraints in adaptation theory: Traits and Non-traits. Oikos 41: 157–160.

    Google Scholar 

  • Wanntorp, H.-E., Brooks, D.R., Nilsson, T., Nylin, S., Ronquist, F., Stearns, S.C., & Wedell, N. 1990. Phylogenetic approaches in ecology. Oikos 57: 119–132.

    Article  Google Scholar 

  • Wickman, P.-O. 1985. Territorial defence and mating success in males of the small heath butterfly,Coenonympha pamphilus L. ( Lepidoptera: Satyridae). Anim. Behay. 33: 1162–1168.

    Google Scholar 

  • Wiklund, C. 1981. Generalist vs. specialist oviposition behaviour in Papilla machaon and functional aspects on the hierarchy of oviposition preferences. Oikos 36: 163–170.

    Article  Google Scholar 

  • Wiklund, C. & Fagerström, T. 1977. Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies. Oecologia 31: 153–158.

    Google Scholar 

  • Wiklund, C., Nylin, S. & Forsberg, J. 1991. Sex-related variation in growth rate as a result of selection for large size and protandry in a bivoltine butterfly (Pieris napi L.). Oikos 60: 241–250.

    Google Scholar 

  • Wiklund, C., Persson, A. & Wickman, P.-O. 1983. Larval aestivation and direct development as alternative strategies in the speckled wood butterfly Pararge aegeria in Sweden. Ecol. Ent. 8: 233–238.

    Google Scholar 

  • Wiklund, C., Wickman, P.-O. & Nylin, S. 1992. A sex difference in the propensity to enter direct/diapause development: A result of selection for protandry? Evolution 46: 519–528.

    Google Scholar 

  • Woltereck, R. 1909. Weitere experimentalle Untersuchungen über Artveränderung, speziell Ober das Wesen quantitativer Arten-unterschiede bei Daphniden. Verh. dt. zool. Ges. 1909: 110–172.

    Google Scholar 

  • Zonneveld, C. 1992. Polyandry and protandry in butterflies. Bull. Math. Biol. 54: 957–976.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nylin, S. (1994). Seasonal plasticity and life-cycle adaptations in butterflies. In: Danks, H.V. (eds) Insect life-cycle polymorphism. Series Entomologica, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1888-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1888-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4401-3

  • Online ISBN: 978-94-017-1888-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics