Skip to main content

Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains

  • Chapter
Lactic Acid Bacteria: Genetics, Metabolism and Applications

Abstract

Lactic acid bacteria (LAB) have the enzyme potential to transform amino acids into aroma compounds that contribute greatly to cheese flavour. Generally, amino acid conversion by LAB is limited by their low production of α-ketoglutarate since this α-ketoacid is essential for the first step of the conversion. Indeed, we have demonstrated that adding exogenous α-ketoglutarate to cheese curd, as well as using a genetically modified L. lactis strain capable of producing α-ketoglutarate from glutamate, greatly increased the conversion of amino acid to potent aroma compounds in cheese. Here we report the presence of glutamate dehydrogenase (GDH) activity required for the conversion of glutamate to α-ketoglutarate in several ‘natural’ LAB strains, commonly used in cheese manufacturing. Moreover, we show that the ability of LAB to produce aroma compounds from amino acids is closely related to their GDH activity. Therefore, GDH activity appears to be a major criterion for the selection of flavour-producing LAB strains, which could be used as a starter or as an adjunct to intensify flavour formation in some cheeses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alting AC, Engels WJM, Schalkwijk van S and Exterkate FA (1995) Purification and characterization of cystathionine ß-lyase from Lactococcus lactis subsp. cremoris B78 and its posible role in flavor development in cheese. Appl. Environ. Microbiol. 61 (11): 4037–4042.

    PubMed  CAS  Google Scholar 

  • Amarita F, Requena T, Taborda G, Amigo L and Pelaez C (2001) Lactobacillus casei and Lactobacillus plantarum initiate catabolism of methionine by transamination. J. Appl. Microbiol. 90: 971–978.

    Google Scholar 

  • Ayad E, Verheul A, de Jong C, Wouters JTM and Smit G (1999) Flavour forming abilities and amino acid requirements of Lactococcus lactis strains isolated from artisanal and non-dairy origin. Int. Dairy J. 9: 725–735.

    Google Scholar 

  • Banks JM, Yvon M, Gripon JC, Fuente MAdL, Brechany EY, Williams AG and Muir DD (2001) Enhancement of amino acid catabolism in cheddar cheese using a-ketoglutarate: amino acid degradation in relation to volatile compounds and other aroma character. Int. Dairy J. 11 (4–7): 235–243.

    Article  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD and Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp.lactis IL 1403. Genome Res. 11 (5): 731–753

    Article  PubMed  CAS  Google Scholar 

  • Bruinenberg PG, Roo Gd and Limsowtin GKV (1997) Purification and characterization of cystathionine y-lyase from Lactococus lactis subsp. cremoris SK11: possible role in flavor compound formation during cheese maturation. Appl. Environ. Microbiol. 63: 561–566.

    Google Scholar 

  • Christensen KR and Reineccius GA (1995) Aroma extract dilution analysis of aged Cheddar cheese. J. Food Sci. 60: 218–220.

    Article  CAS  Google Scholar 

  • Crow V, Curry B and Hayes M (2001) The ecology of non-starter lactic acid bacteria (NSLAB) and their use as adjuncts in New Zealand Cheddar. Int. Dairy J. 11: 275–283.

    Google Scholar 

  • Dias B and Weimer B (1998) Conversion of methionine to thiols by Lactococci, Lactobacilli, and Brevibacteria. Appl. Environ. Microbiol. 64: 3320–3326.

    PubMed  CAS  Google Scholar 

  • Friedrich JE and Acree TE (1998) Gas chromatography olfactometry (GC/O) of dairy products. Int. Dairy J. 8: 235–241.

    Article  CAS  Google Scholar 

  • Gao S, Oh DH, Broadbent JR, Johnson ME, Weimer BC and Steele JL (1997) Aromatic amino acid catabolism by lactococci. Lait. 77: 371–381.

    Article  CAS  Google Scholar 

  • Gao S, Mooberry ES and Steele JL (1998) Use of 13C nuclear magnetic resonance and gas chromatography to examine me-thionine catabolism by Lactococci. Appl. Environ. Microbiol.

    Google Scholar 

  • -4675.

    Google Scholar 

  • Gummalla S and Broadbent JR (1996) Indole production by Lactobacillus spp. in cheese: a possible role for tryptophanase. J. Dairy Sci.: 101.

    Google Scholar 

  • Gummalla S and Broadbent JR (1999) Tryptophan catabolism by Lactobacillus casei and Lactobacillus helveticus cheese flavor adjuncts. J. Dairy Sci. 82 (10): 2070–2077.

    Article  CAS  Google Scholar 

  • Kieronczyk A, Skeie S, Olsen K and Langsrud T (2001) Metabolism of amino acids by resting cells of non-starter lactobacilli in relation to flavour development in cheese. Int. Dairy J. 11: 217–224.

    Google Scholar 

  • Kubickova J and Grosch W (1997) Evaluation of potent odorants of Camembert cheese by dilution and concentration techniques. Int. Dairy J. 7: 65–70.

    Article  CAS  Google Scholar 

  • MacLeod P and Morgan ME (1958) Differences in the ability of lactic streptococci to form aldehydes from certain amino acids. J. Dairy Sci. 41: 908–913.

    Article  CAS  Google Scholar 

  • Milo C and Reineccius GA (1997) Identification and quantification of potent odorants in regular-fat and low-fat mild Cheddar cheese. J. Agric. Food Chem. 45: 3590–3594.

    Article  CAS  Google Scholar 

  • Misono H, Goto N and Nagazaki S (1985) Purification, crystallisation and properties of NADP+-specific glutamate dehydrogenase from Lactobacillus fermentum. Agric. Biol. Chem. 49: 117–123.

    Google Scholar 

  • Molimard P and Spinnler HE (1996) Review: Compounds involved in the flavor of surface mold-ripened cheeses: origins and properties. J. Dairy Sci. 79: 169–184.

    Article  CAS  Google Scholar 

  • Morgan ME (1976) The chemistry of some microbially induced flavor defects in milk and dairy foods. Biotechnol. Bioeng. 18: 953–965.

    Article  CAS  Google Scholar 

  • Morishita T and Yajima M (1995) Incomplete operation of biosynthetic and bioenergetic functions of the citric acid cycle in multiple auxotrophic lactobacilli. Bios. Biotech. Biochem. 59 (2): 251–255.

    Article  CAS  Google Scholar 

  • Nierop-Groot MN and de Bont JAM (1998) Conversion of phenylalanine to benzaldehyde initiated by an aminotransferase in Lactobacillus plantarum. Appl. Environ. Microbiol. 64: 30093013.

    Google Scholar 

  • Nierop-Groot MN and de Bont JAM (1999) Involvement of manganese in conversion of phenylalanine to benzaldehyde by lactic acid bacteria. Appl. Environ. Microbiol. 65 (12): 5590–5593.

    PubMed  CAS  Google Scholar 

  • Rijnen L, Delacroix-Buchet A, Demaizières D, Le Quéré J-L, Gripon J-C and Yvon M (1999) Inactivation of lactococcal aromatic aminotransferase prevents the formation of floral aroma compounds from aromatic amino acids in semi-hard cheese. Int. Dairy J. 9: 877–885.

    Google Scholar 

  • Rijnen L, Courtin P, Gripon J-C and Yvon M (2000) Expression of a heterologous glutamate dehydrogenase gene in Lactococcus lactis highly improves the conversion of amino acids to aroma compounds. Appl. Environ. Microbiol. 66 (4): 1354–1359.

    Article  PubMed  CAS  Google Scholar 

  • Skeie S, Lindberg C and Narvhus J (2001) Development of amino acids and organic acids in Norvegia, influence of milk treatment and adjunct Lactobacillus. Int. Dairy J. 11: 399–411.

    Google Scholar 

  • Smith EL, Austen BM, Blumenthal KM and Nyc JF. 1975. Glutamate dehydrogenases. In: Boyer P Ed) The Enzymes. Vol. 11. (pp 293–367). 3 ed. Academic Press, New York.

    Google Scholar 

  • Tammam JD, Williams AG, Noble J and Lloyd D (2000) Amino acid fermentation in non-starter Lactobacillus spp. isolated from Cheddar cheese. Lett. Appl. Microbiol. 30: 370–374.

    Google Scholar 

  • Tucker JS and Morgan ME (1967) Decarboxylation of a-keto acids by Streptococcus lactis var. maltigenes. Appl. Microbiol. 15: 694700.

    Google Scholar 

  • Weerkamp AH, Klijn N, Neeter R and Smit G (1996) Properties of mesophilic lactic acid bacteria from raw milk and naturally fermented raw milk products. Neth. Milk Dairy J. 50: 319–332.

    Google Scholar 

  • Weimer B, Seefeldt K and Dias B. 1999. Sulfur metabolism in bacteria associated with cheese. Antonie van Leeuwenhoek 76: 247–261.

    Article  PubMed  CAS  Google Scholar 

  • Williams AG, Noble J and Banks JM (2001) Catabolism of amino acids by lactic acid bacteria isolated from Cheddar cheese. Int. Dairy J. 11 (4–7): 203–215.

    Article  CAS  Google Scholar 

  • Yvon M and Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int. Dairy J. 11 (4–7): 185–201.

    Article  CAS  Google Scholar 

  • Yvon M, Thirouin S, Rijnen L, Fromentier D and Gripon JC (1997) An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl. Environ. Microbiol. 63: 414–419.

    Google Scholar 

  • Yvon M, Berthelot S and Gripon JC (1998) Adding a-ketoglutarate to semi-hard cheese curd highly enhances the conversion of amino acids to aroma compounds. Int. Dairy J. 8: 889–898.

    Google Scholar 

  • Yvon M, Chambellon E, Sorokine A and Roudot-Algaron F (2000) Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Appl. Environ. Microbiol. 66 (2): 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Yvon M, Bonnarme P, Chambellon E, Semon E and Spinnler HE 2001 Transamination reaction initiates the methionine conversion to methylthioacetaldehyde by Lactococcus lactis. NIZO dairy conference on food microbes - From knowledge to application. Ede, The Netherlands: 36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tanous, C., Kieronczyk, A., Helinck, S., Chambellon, E., Yvon, M. (2002). Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics