Skip to main content

Abstract

Heat stress in plants in general, and especially in cultivated agricultural or horticultural species, is a complicated issue since it often occurs simultaneously with drought stress. For this reason, it is sometimes difficult to distinguish between the two and extensive research theoretical and applied, has taken this stress bull by its two horns, not always making a clear distinction between the relative importance of each in terms of coping strategies. However, much recent research conducted under conditions of optimal water supply has provided conclusive evidence that high temperature stress is an independent syndrome, although some secondary effects may be common to both drought and water stress symptoms.

It’s too darn hot! ...refrain from song of Danny Kaye

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banas, A., Johansson, I. and Stymne, S. 1992. Plant microsomal phospholipases with high activities towards oxygenated acyl groups. pp. 1–30. In: Proc. 10th Int. Symp. Metabolism Structure and Utilization of Plant Lipids, Tunis.

    Google Scholar 

  • Clarke, A.A. and Critchley, C. 1992. The identification of a heat shock protein complex in chloroplasts of barley leaves. Plant Physiol. 100: 2081–9.

    Article  PubMed  CAS  Google Scholar 

  • Cabane, M., Calvet, P., Vincens, P. and Boudet, A. 1993. Characterization of chilling acclimation related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta 190: 346–53.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J. 1989. Hot sex in voodoo lilies. Nature 339: 258–9.

    Article  Google Scholar 

  • Demel, R., Geurt, W., Van Kessel, A., Zwaal, R., Roelofsen, B. and Van Deenen, L.M. 1975. Relation between various phospholipase actions and the interfacial phospholipid pressure in monolayers. Biochim. Biophys. Acta 406: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Donati, Y., Storman, D.O. and Polla, B. 1990. Oxidative injury and the heat shock response. Biochem. Pharmac. 40: 2471–77.

    Article  Google Scholar 

  • Ellis, R.J., 1991. Chaperone function: cracking the second half of the genetic code. Plant Jour. 1: 9–14.

    Article  CAS  Google Scholar 

  • Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff, P., Gatenby, A.A. and Lorimer, G.H. 1989. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337: 44–7.

    CAS  Google Scholar 

  • Gombos, Z., Wada, H., Hideg, E. and Murata, N. 1994. The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol. 104: 563–67.

    PubMed  CAS  Google Scholar 

  • Havaux, M. 1993. Rapid photosynthetic adaptation to heat stress in potato leaves by moderately elevated temperatures. Plant Cell Environ. 16: 461–7.

    Article  Google Scholar 

  • Hernandez, L. and Vierling, E. 1993. Expression of low molecular weight heat shock proteins under field conditions. Plant Physiol. 101: 1209–16.

    PubMed  CAS  Google Scholar 

  • Kader, J.C., Ostergaard, J., Vergnolle, C. and Renard, M. 1991. Bifunctional lipid transfer/fatty acid binding problems in plants. pp. 212–4. In: Eds. P.J. Quinn and J.L. Harwood. Plant Lipid Biochemistry Structure and Utilization. Portland Press, London.

    Google Scholar 

  • Kuznetsov, V., Rakitin, V., Borisome, N. and Rotschupkin, B.V. 1993. Why does heat shock increase salt resistance in cotton plants? Plant Physiol. Biochem. 31: 181–8.

    CAS  Google Scholar 

  • Leshem, Y.Y. 1987. Membrane phospholipid catabolism and Cat+ activity in control of senescence. Physiol. Plant 69: 551–9.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y. 1992. Plant Membranes: A Biophysical Approach to Membrane Structure and Function. p. 181. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Leshem, Y.Y., Avtalion, R.R. Agassi, R., Gottlieb, H. and Bash, D. 1993a. Manifestations of mechanical stress in membranes: a prospective hypothesis of endogenous expression of exogenous stress signalling. pp. 27–48. In: Eds. M.B. Jackson and C. Black. Interacting Stresses in Plants in a Changing Environment. NATO AW G Series. Springer-Verlag, Berlin.

    Google Scholar 

  • Leshem, Y.Y., Margel, S., Aurbach, P. and Sofer, Y. 1993b. Biophysical parameters of linoleic hydroperoxides as assessed by surface behaviour and FTR spectrometry: possible relevance to senescence. Plant Growth Reg. 12: 263–72.

    Article  CAS  Google Scholar 

  • Leustek, T., Amir-Shapira, D., Toledo, H., Brot, N. and Weissbach, H. 1992. Autophosphorylation of 70 kDa heat shock proteins. Cell. Mol. Biol. 38: 1–10.

    PubMed  CAS  Google Scholar 

  • McElwain, E.F. and Spiker, S. 1992. Molecular and physiological analysis of a heat shock response in wheat. Plant Physiol. 99: 1455–60.

    Article  PubMed  CAS  Google Scholar 

  • Nover, L., Scharf, K.D. and Neumann, D. 1989. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a special set of mRNAs. Mol. Cell Biol. 9: 1298–1308.

    PubMed  CAS  Google Scholar 

  • Paliyath, G. and Droillard, M.J. 1992. The mechanisms of membrane deteroriation and dis-assembly during senescence. Plant Physiol. Biochem. 30: 789–812.

    CAS  Google Scholar 

  • Pike, C.S. 1982. Membrane lipid physical properties in annuals grown under contrasting thermal origins. Plant Physiol. 70: 1704–66.

    Article  Google Scholar 

  • Primach, G.S., Hahn, O.T. and Joly, R.J. 1993. A simple method for determination of epicuticular wax loads in intact sorghum leaves. Can. J. Plant Sci. 73: 521–4.

    Article  Google Scholar 

  • Raison, J.K., Pike, C.S. and Berry, J.A. 1982. Growth temperature induced alterations in the thermotropic properties of Nerium oleander membrane lipids. Plant Physiol. 70: 215–8.

    Article  PubMed  CAS  Google Scholar 

  • Rawyler, A. and Siegenthaler, P.A. 1980. Role of lipids in function of photosynthetic membranes by treatment with lipolytic acyl hydrolase. Eur. J. Biochem. 247: 6970–7.

    Google Scholar 

  • Rikin, A., Dilliwth, J.W. and Bergman, D.K. 1993. Correlation between circadian rhythm of resistance to extreme temperatures and changes in fatty acid composition in cotton seedlings. Plant Physiol. 101: 31–6.

    PubMed  CAS  Google Scholar 

  • Santarius, K. and Weir, E. 1988. Heat stress and membranes. pp. 99–112. In: Eds. J.L. Harwood and T.J. Walton. Plant Membranes. Structure, Assembly and Function. The Biochemical Society, London.

    Google Scholar 

  • Shinitzsky, M. 1984. Membrane fluidity and cellular functions. pp. 1–15. In: Ed. M. Shinitzsky. Physiology of Membranal Fluidity, Vol. I. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Shpiler, L. and Blum, A. 1991. Heat tolerance for yield and its components in different wheat cultivars. Euphytica 51:257–63.

    Google Scholar 

  • Sinenski, M. 1974. Homeoviscous adaptation-a homeostatic process that regulates the viscosity of membranes in E. coli. Proc. Natl. Acad. Sci. (USA) 72: 1609–53.

    Google Scholar 

  • Stoller, S. 1977. The Cultivation of the Date Palm in the Land of Israel (Hebrew). pp. 20–7. Kibbutz Hameuchad Press, Tel Aviv.

    Google Scholar 

  • Teiz, L. and Zeiger, E. 1991. Plant Physiology. p. 361. Benjamin-Cummings Publishers, California.

    Google Scholar 

  • Vierstra, R.D. 1993. Protein degradation in plants. Ann. Rev. Plant Physiol. Plant. Mol. Biol. 44: 385–410.

    Article  CAS  Google Scholar 

  • Wada, H., Gombos. Z. and Murata, N. 1990. Enhancement of chilling tolerance of a cyano-bacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–3.

    CAS  Google Scholar 

  • Warrington, I.J., Dunstone, R.I. and Green, L.M. 1977. Temperature effects at three development stages on the yield of the wheat ear. Aust. J. Agric. Res. 28: 11–27.

    Article  Google Scholar 

  • Yamada, M., Tsuboi, S., Osafune, T., Suga, T. and Takishima, K. 1991. Multifunctional properties of ion specific lipid transfer protein from higher plants. pp. 278–280. In: Eds. P.J. Quinn and J.L. Harwood. Plant Lipid Biochemistry, Structure and Utilization. Portland Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mckersie, B.D., Leshem, Y.Y. (1994). Heat stress. In: Stress and Stress Coping in Cultivated Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3093-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3093-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4400-6

  • Online ISBN: 978-94-017-3093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics