Skip to main content

VA Mycorrhizal Techniques / VAM Technology in Establishment of Plants under Salinity Stress Conditions

  • Chapter
Techniques in Mycorrhizal Studies

Abstract

This chapter give a brief account about salt stress and its effect on plant growth, nutrition and on distribution, type and number of VAM fungi. VAM help in establishment of plants under salinity stress. Techniques to assess soil and plant activity has also been given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.K. and Robson, A.D. 1991. Factors influencing the occurrrence of vesicular arbuscular mycorrhizas, Agricultural Ecosystem Environment, 35: 121–150.

    Article  Google Scholar 

  2. Abroal I.P., 1986. Fuel and forage production from salt-affected wasteland in India. Reclaimation Revegation Research, 5: 65–74.

    Google Scholar 

  3. Allen, E.B. and Cunningham, G.L. 1983. Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytologist, 93: 227–236.

    Article  Google Scholar 

  4. Arad S. and Richmond A.E. 1973. RNAse activity in barley leaves in relation to leaf water content, Israel Journal of Botany, 22: 208–210.

    Google Scholar 

  5. Auge, RM., Schekel, KA. and Wample, RL. 1987. Leafwater and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant and Soil, 99: 291–302.

    Article  CAS  Google Scholar 

  6. Austin R.B. 1989. Prospects for improving crop production in stressful environments of plant under stress, In: ‘Biochemistry, Physiology and Ecology“, (eds. Jones H.G., Flowers J.J. and Jones M.B.) Cambridge University. Press, Cambridge pp. 235–248.

    Google Scholar 

  7. Baltruschat, H. and Schonbeck, F. 1975. Untersuchungen über den Einfluss der endotrophen Mycorrhiza auf den Befall Von Tabak mit Thielaviopsis basicola. Phytopatholozisch Zeitschrift, 84: 172–188.

    Article  CAS  Google Scholar 

  8. Bansal, M. and Mukerji, K. G. 1994. Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza, 5: 49–54.

    Article  Google Scholar 

  9. Barber, D.A. 1967, Microorganisms and the inorganic nutrition of higher plants. Annual Review Plant Physiology, 19: 71–88.

    Article  Google Scholar 

  10. Barber, D.A. and Lee, RB. 1974. The effect of microorganisms on the absorption of manganese by plants. New Phytologist, 73: 97–106.

    Google Scholar 

  11. Berta, G., Fusconi, A., Trotta, A. and Scannerini, S. 1990. Morpholgenetic modifications induced by mycorrhizal fungus Glomus strain E3 in the root system ofAlliumporrum L. New Phytologist, 114: 207–215.

    Article  Google Scholar 

  12. Bowen, G.D. 1973. Mineral nutrition of ectomycorrhizae. In: “Ectomycorrhizae”, (eds. Marks, G.D. and Kozlowski, TT. ), Academic Press Incorporated London, pp. 151–205.

    Google Scholar 

  13. Bowen, G.D. 1991. Microbial dynamics in the rhiozsphere: Possible strategies in managing rhizosphere populations. In: The “rhizosphere and plant growth”, (eds. Keister, D.L. and Cregan, PB. ), Kluwer Academic Publisher., Netherlands pp. 25–32.

    Chapter  Google Scholar 

  14. Brown, A. 1990. A survey of the occurrence of vesicular-arbuscular mycorrhizae (VAM) among salt marsh halophytes. (Abstracts), Eighth North American Conference on Mycorrhizae, University of Wyoming Agricultural Experiment Station, Jackson, Wyoming, U.S.A.

    Google Scholar 

  15. Cook, RC. and Whipps, J.M. 1993. Ecophysiology of fungi. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  16. Cooke, J.C. and Lefor, M.W. 1990. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA. Environmental Management, 14: 131–137.

    Article  Google Scholar 

  17. Dehne H.W. 1987. Zur Nutzung der VAMycorrhizals anti-stress factor. Anewandte Botanik, 61: 135–143.

    Google Scholar 

  18. Dixon, R.K., Garg, V.K. and Rao, M. V. 1993. Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: Rhizosphere relations and seedling growth, Arid Soil Research Rehabitation, 7: 133–144.

    Google Scholar 

  19. Dixon R.K., Mukerji K.G., Chamola B.P. and Kaushik A. 1997. Vesicular arbuscular mycorrhizal symbiosis in relation to forestation in arid land. Annals of Forestry, 5: 1–9.

    Google Scholar 

  20. Dodd J.C., Arias I. Koomen I. and Hayman D S 1990. The management of populations of VAM fungi in acid infertile soil of a savanna system. Plant and Soil, 122: 229–240.

    CAS  Google Scholar 

  21. El-Saidi MT and Hawash M. 1971. The effect ofusing saline water for irrigation on the growth and chemical properties of rosselle plants (Hibicus sabdoriffa L.). Z. Ackeru Pflanzenbou, 134: 251–256.

    Google Scholar 

  22. El-Saidi M.T. and Kortam M. 1974. Effect of different salinity levels on growth, development and some physiological process of cotton plants. II Effect of gradual addition of salts during vegetation. Z. Ackeru. Pflanzenbou, 139: 123–132.

    CAS  Google Scholar 

  23. El-Saidi M.T., Hegazy W.A. Kortam M. and El-Zeiny H. 1983. The use of saline water for propagation and its effect on growth and yield of cotton plants. Proceedings First Conference in Agriculture, Egyptian Society of Crop Science, pp. 739–753.

    Google Scholar 

  24. Estaun, M.V. 1989. Effect of sodium chloride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus, Glomus mosseae. Agriculture Ecosystem and Environment, 29: 123–129.

    Article  Google Scholar 

  25. Estaun, M. V. 1991. Effect of Noel NaCl mannitol on the germination of two isolates of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Proceedings Thrid 3rd European Symposium on Mycorrhizas, Univ. of Sheffield, Sheffield, U.K.

    Google Scholar 

  26. Gale, J., Kow, H.C. and Hagan, R.M. 1967. Changes in water balance and photosynthesis of onion, bean and cotton plants under saline conditions. Physiologia, 20: 408–420.

    Article  CAS  Google Scholar 

  27. Gerdemann, J.W. 1968. Vesicular-arbuscular mycorrhiza and plant growth. Annual Review Phytopathology, 6: 397–418.

    Article  Google Scholar 

  28. Gilligan, C.A. 1985. Probability models for host-infection by soil-borne fungi, Phytopathology 77: 261–266.

    Google Scholar 

  29. Giovannetti, M., Avio, L., Sbrana, C. and Citernesi, A.S. 1993. Factors affecting appresorium development in vesicular arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gred. and Trappe, New Phytologist, 123: 114–122.

    Google Scholar 

  30. Giri, B. and Chamola, B.P. 1999. Vesicular arbuscular mycorrhizal fungi under salinity and drought stress, In: “Advances in Microbial Biotechnology”, (eds. Tiwari, J.P., Lakhanpal, T.N., Singh, J., Gupta, R and Chamola, B.P. ), APH Publishing Corporation, New Delhi, pp. 421–430.

    Google Scholar 

  31. Giri, B., Kaur M. and Mukerji K. G., 1999. Growth responses and dependency of Sesbania aegyptica on vesicular arbuscular mycorrhiza in salt stressed soil Annals Agricultural Research, 20: 109–112.

    Google Scholar 

  32. Giri, B. and Mukerji, K.G. 1999. Improved growth and productivity of Sesbania grandilora pers. under salinity stress through mycorrhizal technology, Journal of Phytological Research, 12: 35–38.

    Google Scholar 

  33. Greenway, H. 1962. Plant response to saline substances. I. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatment. Australian Journal of Biological Sciences, 15: 16–38.

    CAS  Google Scholar 

  34. Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology, 31: 149–190.

    Article  CAS  Google Scholar 

  35. Greenway, H. and Osmond, C.B. 1982. Salt response of enzymes from species differing in salt tolerance. Plant Physiology, 49: 256–259.

    Article  Google Scholar 

  36. Grover, A., Pareek, A, Singla, S.L., Minhas, D., Katiyar, S., Ghawana, S., Dubey, H., Agarwal, M., Rao, G.U., Rathee, J. and Grover, A. 1999. Engineering crops for tolerance against abiotic stress through gene manipulation. Current Science, 75 (7): 689–696.

    Google Scholar 

  37. Gupta, R. and Kirshnamurthy, K.V. 1996. Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaC1 and acid stress. Mycorrhiza, 4: 197–200.

    Google Scholar 

  38. Harley, J.L. 1978. Ectomycorrhizas as nutrient absorbing organs. Proceedings Royal Society, London, 203B: 1–21.

    CAS  Google Scholar 

  39. Hasio, T.C. 1973. Plant responses to water stress. Annual Review of Plant Physiology, 24: 519–570.

    Article  Google Scholar 

  40. Hanson-Porath and Poljakoff-Mayber, A. 1969. The effect of salinity on the malic dehydrogenase of pea roots, Plant Physiology, 44: 1031–1034.

    Article  Google Scholar 

  41. Hirrel, M.C. 1981. The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycologia, 73: 610–617.

    Article  CAS  Google Scholar 

  42. Hirrel, M. C. and Gerdemann, J.W. 1980. Improved growth of onion and bell pepper in saline soils by two vesicular arbuscular mycorrhizal fungi. Soil Science Society of America Journal, 44: 654–655.

    Article  CAS  Google Scholar 

  43. Ho, I., 1987. Vesicular-arbuscular mycorrhizae of halophyte grasses in the Alvard desert of Oregon. Northwest Sci., 61: 148–151.

    Google Scholar 

  44. Jain, R.K., Paliwal, K., Dixon, R.K. and Gjerstad, D.H. 1989 Improving productivity of multipurpose trees growing on substandards soils of India, Journal of Forestry, 87: 38–42.

    Google Scholar 

  45. Juniper, S. and Abbott, L.K. 1991. The effect of salinity on spore germination and hyphal extension of some VAmycorrhizal fungi. Abstracts. Third European Symposium on Mycorrhizas, University of Sheffield, Sheffield, U.K.

    Google Scholar 

  46. Juniper, S. and Abbott L.K. 1992. The effect of a change of soil salinity on growth of hyphae from spores of Gigaspora decipience and Scutellospora calospora. Abstracts. International symposium on Management of Mycorrhizas in Agriculture, Horticulture and forestry, University of Western Australia.

    Google Scholar 

  47. Juniper, S. and Abbott, L.K. 1993. Vesicular arbuscular mycorrhiza and soil salinity. Mycorrhiza, 4: 45–57.

    Article  Google Scholar 

  48. Kaushik, A., Dixon, R.K. and Mukerji, K.G. 1992. Vesicular arbuscular mycorrhizal relationships of Prosopis Juliflora and Zizyphus jujuba. Phytomorphology, 133–147.

    Google Scholar 

  49. Kendrick, B. and Berch, S. 1885. Mycorrhizae: Application in agriculture and forestry, In: “Comprehensive Biotechnology”, (eds. Robinson, C.W. and Howell, J.A. ), vol. 4, pp. 109–152.

    Google Scholar 

  50. Khan, A.G. 1974. The occurrence of mycorrhiza in halophytes, hydrophytes and xerophytes, and of Endogone spores in adjacent soils, Journal of General Microbiology, 81: 7–14.

    Article  Google Scholar 

  51. Kim, C.K. and Weber, D.J. 1985. Distribution of VAmycorrhiza on halophytes on inland salt playas. Plant and Soil, 83: 207–214.

    Article  CAS  Google Scholar 

  52. Koske, R.E. 1981. Gigosporagigantea: Observations on spores germination of VAmycorrhizal fungus, Mycologia, 73: 289–300.

    Google Scholar 

  53. Kothari, S.K., Marschner, H. and George, E. 1990. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize, New Phytologst, 116: 303–311.

    Article  Google Scholar 

  54. Kothari, S.K., Marschner, H. and Romheld, V. 1991. Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zine by maize grown in a calcareous soil. Plant and Soil, 131: 177–185.

    Article  CAS  Google Scholar 

  55. Kozlowski, T.T., Kramer, P.J. and Pallardy, S.G. 1991. The physiological ecology of woody plants. Academic Press, Inc., Harcourt Brace Jovanovich Pub. San. Diego, California.

    Google Scholar 

  56. Kramer, P.J., 1983. Water relations of plants. Academic Press Inc., Harcourt Brace Jovanovich, Pub., San Diego, California.

    Google Scholar 

  57. Lüttge, U., Cram, W.J. and Lattes, G.G. 1971. The relationship of salt stimulated respiration to localized ion transport in carrot tissue. Zeitschrift für Pflanzenphysiologie, 64: 418–426.

    Google Scholar 

  58. Marcar, N.E., Dart, P. and Sweeney, C. 1991. Effect of root-zone salinity on growth and chemical composition of Acacia ampliceps B.R, Maslin, A. auriculiformis A. Cunn. ex Benth andA. mangium Wild at two nitrogen levels. New Phytologist, 119: 567–573.

    Article  CAS  Google Scholar 

  59. Marschner, H. 1991. Mechanism of adaptation of plants to acid soils. Plant and Soil, 34: 1–20.

    Google Scholar 

  60. McMillen, B.G., Juniper, S. and Abbott, L.K. 1998. Inhibition of hyphal growth of a vesicular arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biology Biochemistry, 30: 1639–1646.

    Article  CAS  Google Scholar 

  61. Meiri, A. and Shalhevet, J. 1973. Crop growth under saline conditions. Ecological studies Vol.5, Springer Verlag Berlin, Heidelberg, New York, pp. 277290.

    Google Scholar 

  62. Menge, J.A. 1983. Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture, Canadian Journal of Botany, 61: 1015–1024.

    Article  Google Scholar 

  63. Mizrahi, Y., Blumenfield, A. and Richmond, A.E. 1970. Abscisic Acid and transpiration in leaves in relation to osmotic root stress. Plant Physiology, 46: 169–171.

    Article  PubMed  CAS  Google Scholar 

  64. Mukerji, K.G. and Kapoor, A. 1986. Occurrence and importance of vesicular arbuscular mycorrhizal fungi in semi and regions of India. Forest Ecology and Management, 16: 117–126.

    Article  Google Scholar 

  65. Mukerji, K.G. and Kochar, B. 1983. Vesicular-arbuscular mycorrhiza in rape seed plant. Proceeding Sixth International Rape Seed Conference, Paris, Vol.II: 945–950.

    Google Scholar 

  66. Mukerji, K.G., Chamola, B.P., Kaushik, A., Sarwar, N. and Dixon, R.K. 1996. Vesicular arbuscular mycorrhiza: Potential biofertilizer for nursery raised multipurpose tree species in tropical soils. Annals of Forestry, 4: 12–20.

    Google Scholar 

  67. Mukerji, K.G., Jagpal, R., Bali, M. and Rani, R. 1991. The importance of mycorrhiza for roots, In : Plant Roots and their Environment, (eds. McMicheal, B.L. and Hans Persson), Elsevier, Amsterdon, pp.290–308.

    Google Scholar 

  68. Munns, R., Schachtman, O.P. and Condon, A.G. 1995. The significance of two-phage growth response to salinity in wheat and barley. Australian Journal of Plant Physiology, 22: 561–569.

    Google Scholar 

  69. Newman, E.I. and Watson, A. 1977. Microbial abundance in the rhizosphere. Plant and Soil, 48: 17–56.

    Google Scholar 

  70. Nieman, R.H. 1962. Some effects of NaCl on growth, photosynthesis and respiration of twelve crop plants. Botanical Gazette, 123: 279–285.

    Google Scholar 

  71. Nieman, R.H. 1965. Expansion of bean leaves and its suppression by salinity, Plant Physiology, 40: 156–161.

    Google Scholar 

  72. Nye, P.H. 1979. Soil properties controlling the supply of nutrients to the root surface. In: The soil-root interface. (eds. Harley, J.L. and Russel, R S. ), Academic Press Inc., London, pp. 39–40.

    Google Scholar 

  73. Ojala, J.C., Jarrell, W.M., Menge, J.A. and Johnson, E.L.V. 1983. Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomy Journal, 75: 255–259.

    Google Scholar 

  74. Pfeiffer, C.M. and Bloss, H.E. 1988. Growth and nutrition of guayle (Parthenium argentatum) in a saline soil as influenced by vesicular abuscular mycorrhiza and phosphorus fertilization New Phytologist, 108: 315–321.

    Google Scholar 

  75. Plant, Z. 1974. Nitrate reductase activity of wheat seedlings during exposure of and recovery from water stress and salinity. Physiologia Plantarum, 30: 212–217.

    Google Scholar 

  76. Pond, E.C., Menge, J.A. and Jarrell, W.M. 1984. Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline soils. Mycologia, 76: 74–84.

    Google Scholar 

  77. Poss, I.A., Pond, E.C., Menge, J.A. and Jarrell, WM. 1985. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant and Soil, 88: 307–319.

    Google Scholar 

  78. Raina, S., Chamola, B.P. and Mukerji, K.G. 2000. Evolution of mycorrhiza. In : Mycorrhizal Biology (eds. Mukerji, K.G., Chamola, B.P. and Singh, J.), Kluwer Academic/Plenum Publishers, New York, pp.1–26.

    Google Scholar 

  79. Rauser, W.E. and Hanson, J.B. 1966. The metabolic status of RNA in soybean roots exposed to saline media. Canadian Journal of Botany, 44: 759–776.

    Google Scholar 

  80. Reid, C.P.P. 1984. Mycorrhizae: A root soil interface in plant nutrition, in: Microbial-plant Interactions. (eds. Todd, R.L. and Giddens, J.E.) America Society of Agronomy, (Special Publication), 47: 29–50.

    Google Scholar 

  81. Rhodes, L.H. and Gerdemann, J.W. 1975. Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions, New Phytologist, 75: 555–561.

    Google Scholar 

  82. Rosendahl, C.N. and Rosendahl, S. 1991. Influence of vesicular arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis salivas L.) to salt stress. Environmental Experimental Botany, 31: 313–318.

    Google Scholar 

  83. Roving, A.D. 1969. Plant root exudates. Botanical Review, 35: 35–57.

    Google Scholar 

  84. Rovira, A.D. 1991. Rhizosphere research–85 years of progress and frustation, In: “The rhizosphere and plant growth”. (eds. Keister, D.L. and Cregan, P.B. ), Kluwer Academic Publishers, Netherlands, pp. 3–13.

    Chapter  Google Scholar 

  85. Rovira, A.D., Bowen, G.D. and Foster, RC. 1983. The significance of rhizosphere microflora and mycorrhizas on plant nutrition, In: “Encyclopedia of Plant Physiology”. New Series. (eds. Lauchli, E. and Bieleski, RL.). Springer-Verlag, Berlin, Hydelberg, 15: 61–93.

    Google Scholar 

  86. Rozema, J., Arp. W., Van Diggelen, J., Van Esbroek, M., Broekman, R. and Punte, H. 1986. Occurrence and ecological significance ofvesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Botanika Neerlandica, 35: 457–467.

    Google Scholar 

  87. Sanders, F.E. and Sheikh, N.A. 1983. The development of vesicular arbuscular mycorrhizal infection in plant root systems. Plant and Soil, 71: 223–246.

    Article  Google Scholar 

  88. Sastry, M. S.R and John, B.N. 1999. Arbuscular mycorrhizal fungal diversity of stressed soils of Bailadila iron ore sites in Bastar region of Madhya Pradesh. Current Science, 77(8): 1095–1100.

    Google Scholar 

  89. Sengupta, A. and Chaudhuri, S. 1990. Vesicular-arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges River Delta in West Bengal (India). Plant and Soil, 122: 111–113.

    Google Scholar 

  90. Slayter, R O. 1967. Plant water relationships. Academic Press, New York.

    Google Scholar 

  91. Srivastava, D., Kapoor, R., Srivastava, S.K. and Mukerji, K.G. 1996. Vesicular arbuscular mycorrhiza–an overview, In: Concepts in Mycorrhizal Research, (ed. Mukerji, K. G. ), Kulwer Academic Publishers, Netherlands, pp. 1–39.

    Google Scholar 

  92. Tinker, P.B.H. 1978. Effect of vesicular arbuscular mycorrhizas on plant nutrition and plant growth. Physiology Vegetale, 16: 743–751.

    Google Scholar 

  93. Tinker, P.B.H. 1984. The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soil. Plant and Soil, 76: 77–91.

    Google Scholar 

  94. Tommerup, I. C. 1984. Effect of soil water potential on spore germination of vesicular-arbuscular fungi. Transactions of the British Mycological Society, 83: 193–202.

    Google Scholar 

  95. Trappe, J.M. 1981. Mycorrhizae and productivity of and and semi-arid rangelands. Advance Food Production System for arid and semi arid lands, pp. 581–599.

    Google Scholar 

  96. Van Duin, W.E., Rozema, J. and Ernst W.H.O. 1979. Seasonal and spatial variation in the occurrence of vesicular-arbuscular mycorrhiza in salt marsh plants. Agricultural Ecosystem Environment, 29: 107–110.

    Google Scholar 

  97. Weimberg, R. 1970. Enzymes levels in pea seedlings grown on highly saline media. Plant Physiology, 46: 466–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giri, B., Kapoor, R., Mukerji, K.G. (2002). VA Mycorrhizal Techniques / VAM Technology in Establishment of Plants under Salinity Stress Conditions. In: Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds) Techniques in Mycorrhizal Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3209-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3209-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5985-7

  • Online ISBN: 978-94-017-3209-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics